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Abstract 

Is bitcoin the new digital gold? To answer this question, we investigate the 

potential benefits of bitcoin during extremely volatile periods. We use the multivariate 

extreme value theory, which is the appropriate statistical approach to model the tail 

dependence structure of the return distribution. First, considering positions in equity 

markets, we find - similarly to previous studies - that the correlation of extreme returns 

increases during stock market crashes and decreases during stock market booms. 

Second, by combining each equity market with bitcoin, we find that the correlation of 

extreme returns sharply decreases during both market booms and crashes, indicating that 

bitcoin could provide the sought-after benefits of diversification during turbulent times. 

A similar result is obtained for gold, confirming its well-recognized status as a safe 

haven when a crisis occurs. Finally, we find a low extreme correlation between bitcoin 

and gold, which implies that both assets can be used together in times of turbulence in 

financial markets to protect equity positions. From a portfolio management perspective, 

we show that the introduction of bitcoin (along with gold) substantially improves the 

performance of equity positions under tail risk constraints. Such evidence indicates that 

bitcoin can be considered the new digital gold. However, gold itself can still play an 

important role in portfolio risk management. 
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1. Introduction 

Extreme adverse events in financial markets always represent a painful experience 

for market participants. Thus, portfolio diversification during extremely volatile periods 

is of utmost importance for asset managers, financial advisors and investors to control the 

risk levels of their portfolios. A shift to secure assets during such periods is a strategy that 

is very frequently used to reduce portfolio riskiness. Over time, gold has played the role 

of a safe haven (see Ranaldo and Söderlind, 2010); the yellow metal has been considered 

to be a suitable flight-to-quality investment choice for portfolio diversification and 

portfolio hedging against adverse price movements (see Jaffe, 1989; Hillier et al., 2006; 

Baur and Lucey, 2010; Baur and McDermott, 2010, among others). Investors are 

accustomed to including gold in their portfolios, as it provides thoughtful diversification 

benefits to traditional asset classes and is characterized by a high level of liquidity. 

Moreover, the purchasing power and the value of gold have remained stable under the 

threat of the erosion of the monetary or banking systems. Gold has over 5,000 years of 

history as a safe haven. 

Over the past few years, bitcoin has made an explosive entrance into the financial 

world. Bitcoin is an online communication protocol that uses a virtual currency, which 

allows electronic payments. Ten years after the seminal paper by Nakamoto (2008) 

introducing bitcoin, the cryptocurrency has been a success in terms of popularity among 

both individual and institutional investors. Essentially, bitcoin has been introduced as 

something “new” with possible revolutionary effects on the traditional financial system. 

Following Böhme et al. (2015), bitcoin and other cryptocurrencies represent a “social 

science laboratory” with potential disruptive innovations based on blockchain technology 

(payment services, money transfers, and transaction settlements in the banking and 

financial sectors, for example). Although it is no longer the only cryptocurrency, bitcoin 

is by far the largest in terms of market capitalization. Furthermore, the usefulness of 

bitcoin has sparked the interest of both academics and practitioners in the areas of 

statistics, risk management and asset management. Specifically, the financial community 

has been wondering whether bitcoin could provide diversification benefits in times of 

crises by looking for a rigorous answer to the following question: “Is bitcoin the new 

digital gold?”. 

In this paper, we investigate the potential diversification benefits of bitcoin for 

equity positions in periods of extreme price volatility. To this end, we use the extreme 
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value theory, which is the appropriate approach to study this issue and has proven its 

practical value in various disciplines, including earth sciences, engineering, 

environmental sciences and more recently finance (see e.g. de Haan and Ferreira, 2006). 

In a multivariate framework, we focus on extreme correlation, which summarizes the tail 

dependence structure of the return distribution. We develop a research strategy in four 

steps. First, we consider as a starting point a position in equity markets (Europe and the 

United States) and find that the extreme correlation increases during stock market crashes 

and decreases during stock market booms. This confirms a well-known stylized fact 

regarding the international equity markets. Second, we combine each equity market with 

bitcoin and find that the correlation of extreme returns decreases sharply during both 

market booms and crashes, indicating that bitcoin can play an important role in portfolio 

risk management in times of market crash. Third, we combine each equity market with 

gold and find a similar result, thus confirming the well-recognized status of gold as a safe 

haven. Fourth, we study the joint behavior of bitcoin and gold and find a low extreme 

correlation, indicating that both assets can be useful together in times of turbulence in 

financial markets. These results point to the explicit importance of incorporating assets 

with low levels of extreme correlation in a portfolio. In fact, our portfolio analysis does 

suggest that including bitcoin (along with gold) in equity positions substantially improves 

the portfolio performance under tail risk constraints. Such evidence indicates that bitcoin 

can be considered to be the new digital gold. However, gold itself can still play an 

important role in portfolio risk management. 

This paper is organized as follows. Section 2 details the research strategy followed 

in this study. Section 3 deals with the modeling of extremes. Section 4 introduces the 

estimation process, presents the testable hypotheses and reports the empirical results. 

Section 5 discusses the general economic backdrop of bitcoin and gold, compares the 

potential diversification benefits of bitcoin and gold in a separate manner, and then 

assesses the joint potential of bitcoin and gold as diversifiers. Section 6 provides several 

robustness checks. Section 7 assesses the practical implications of the extreme 

dependence structure for asset management. Section 8 concludes the paper putting 

forward that bitcoin is indeed the new digital gold. 

2. Research strategy 

This section presents our research strategy to investigate the potential 

diversification benefits of bitcoin in asset management during extremely volatile periods. 
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Our objective is to answer the following question: “Is bitcoin the new digital gold?”. In 

light of this, we focus on extremely volatile periods, since such market conditions are a 

primary concern for investors intending to protect their equity positions from large losses. 

We use the multivariate extreme value theory, which is considered to be a rigorous 

statistical tool to model the dependence structure of the return distribution far away from 

the center (see Tawn, 1990; Coles and Tawn, 1991, among others). Interestingly, it also 

provides an attractive alternative to the assumption of an underlying multivariate normal 

distribution, which is usually violated when modeling asset returns (see e.g. Richardson 

and Smith, 1993). We focus on extreme correlation which is a widely used measure in 

the context of multivariate extreme value analysis for summarizing the tail dependence 

structure. From a practical standpoint, correlation measures stand for key indicators to 

assess the degree of diversification for portfolio decisions. Our research strategy unfolds 

in four steps, which are described below in detail. 

Step 1: Equity markets 

We consider a position in equity markets (Europe and the United States). We 

focus on the correlation in equity markets when extreme price movements happen so as 

to assess potential diversification benefits in equity positions. Several empirical studies 

have found that the correlation of extreme returns increases during stock market crashes 

and decreases during stock market booms (Longin and Solnik, 2001; Ang and Bekaert, 

2002; Ang and Chen, 2002; Hartmann et al., 2004; Goetzmann et al., 2005). Indeed, 

correlation is not related to market volatility per se, but to the market trend. This implies 

that the probability of large losses in the two markets is significantly higher than the 

probability of large gains, since downside market conditions constitute the driving force 

in equity correlation. A possible explanation for this behavior can be found in Campbell 

and Hentschel (1992). They suggested that news arrival can affect volatility, which, 

therefore, results in an increase in the risk premium and a decrease in asset prices. The 

decrease is greater in case of bad news, whereas it is less sharp in case of good news. In 

that connection, Poon et al. (2003) noted that bad news are more likely to influence equity 

markets, generating at the same time a co-movement in their volatility and a stronger 

dependence during turbulence periods. 

The objective of this first step is to confirm the stylized fact about equity markets 

that the correlation of extreme returns increases during stock market crashes and 

decreases during stock market booms. This lack of international diversification when it is 
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most needed is a negative consideration of integration in equity markets, starting with the 

advent of globalization when international investing became more important (see Levy 

and Sarnat, 1970; Black and Litterman, 1992; Solnik, 1995; You and Daigler, 2010, 

among others). The recent global financial crisis of 2008 that triggered the worst 

economic contraction since the 1930s, reminded investors of the harmful consequences 

of contagion in international equity markets in a painful way (Aloui et al., 2011; Bekaert 

et al., 2014; Derrien and Kecskés, 2013). In such market conditions, investors would have 

to consider alternative diversification strategies to detect potential benefits. 

Step 2: Equity markets and bitcoin 

We then combine each equity market with bitcoin. The objective of this second 

step is to assess the potential diversification benefits of bitcoin in times of extreme price 

fluctuations. In accordance with Caballero and Krishnamurthy (2008), when investors 

have similar portfolios (e.g. equity portfolios), the inclusion of a different type of assets 

(e.g. bitcoin) allows investors to diversify their portfolio better in times of financial 

turmoil. The usefulness of bitcoin for investors is characterized by a decreasing extreme 

correlation during market crashes, implying a desirable alternative with respect to 

diversification benefits. In contrast, an increasing extreme correlation during market 

downturns would imply limited diversification benefits by including bitcoin in an equity 

position. 

Step 3: Equity markets and gold 

We then combine each equity market with gold. Several empirical studies have 

found a low correlation between equity markets and gold during financial crises. 

According to Baur and McDermott (2010), gold can be viewed as a “panic buy in the 

immediate”, following an extreme negative shock which takes place in equity markets; in 

other words, gold loves bad news according to a Wall Street adage. The objective of this 

third step is to confirm the well-known status of gold as a safe haven during stock market 

crashes. By examining the extreme correlation between equity markets and gold, we 

expect to find a decreasing extreme correlation, thus confirming its well-recognized status 

of a safe haven when a crisis occurs. 

Step 4: Bitcoin and gold 

Finally, further motivated by the idea that bitcoin could provide attractive 

properties as a diversifier, we consider a position in bitcoin and gold. The objective of 

this fourth step is to see whether both assets can provide diversification benefits together 



6 

in periods of stress. The usefulness of including both bitcoin and gold in an equity position 

would be characterized by a decreasing extreme correlation during market crashes as 

complementary diversifiers, thus implying extra diversification benefits. In contrast, an 

increasingly extreme correlation during market crashes would imply limited 

diversification benefits, as bitcoin and gold could be viewed as substitutable assets. 

3. Modeling approach 

This section describes the modeling approach for the behavior of extreme returns 

in financial markets. We model the bivariate tail dependence structure of the distribution 

of asset returns. We define extreme returns as return exceedances, that is, returns lower 

than a threshold for the left tail (negative return exceedances) and returns higher than a 

threshold for the right tail (positive return exceedances). First, we deal with the univariate 

modeling of extremes by fitting a general Pareto distribution (GPD) for each marginal 

distribution of return exceedances using the peaks-over-threshold method. Second, we 

deal with the multivariate modeling of extremes by fitting the Gumbel-Hougaard copula 

and focusing on the extreme correlation defined as the correlation of return exceedances. 

Third, we provide some statistical tests related to normality and dependency based on the 

extreme correlation estimates to gain a better statistical understanding of the dependence 

structure as the events become more extreme. 

3.1 Univariate modeling of extremes 

The univariate extreme value theory aims to quantify the stochastic behavior of a 

random variable at its unusually high (or low) levels. In particular, univariate extreme 

value analysis refers to the estimated probability of events occurring that are more 

extreme than those that have already been observed. Such rare events can be described 

via statistical distribution functions. 

Consider a sequence of independent and identically distributed random variables 

𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} with a continuous cumulative distribution function 𝐹𝑋. For positive 

extremes, over threshold 𝑢 > 0, the distribution of exceedances (𝑋 − 𝑢), denoted by 𝐹𝑋
𝑢, 

is given by the following: 

𝐹𝑋
𝑢(𝑥) = 𝑃𝑟(𝑋 − 𝑢 ≤ 𝑥|𝑋 > 𝑢)  =

𝐹𝑋(𝑢 + 𝑥) − 𝐹𝑋(𝑢)

1 − 𝐹𝑋(𝑢)
, 0 < 𝑥 ≤ 𝑥𝐹𝑋

− 𝑢 (1) 

where 𝑥 > 0 represents a given value of exceedances and 𝑥𝐹𝑋
≤ +∞ is the right endpoint 

of 𝐹𝑋. The peaks-over-threshold method is an efficient method for modeling the extremes 
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over a specific threshold under an unknown distribution (see Leadbetter, 1991). In 

particular, with this method, an appropriate threshold is first selected in order to exclude 

the observations not belonging in the right tail (observations below the threshold 𝑢). Then, 

a specific distribution is fitted by using only those values that exceed this threshold 

(observations over the threshold 𝑢). The main advantages of this method are that: (i) it 

links asymptotic models when the threshold converges towards the endpoint of the 

distribution (see below) and (ii) leads to a likelihood function that provides a simple way 

to integrate the non-stationarity of the threshold excesses. The peaks-over-threshold 

method is based on the theoretical arguments of Pickands (1971) who showed that when 

the number of exceedances is a non-homogeneous Poisson process, the distribution of the 

number of exceedances follows a Poisson distribution, while their random size follows a 

GPD.2 Accordingly, this representation (often referred to as a Poisson-GPD model) 

considers two distributions: one for the number of exceedances in a specific time period 

and one for their size. From a practical point of view, we are interested only in the size of 

exceedances in our modeling approach (see Section 4), as the return variable is the key 

input in asset management and portfolio risk assessment (see Section 7). 

One of the main attractions resulting from Pickands (1971) is that for a large class 

of underlying distributions, Balkema and de Haan (1974), and Pickands (1975) showed 

that the excess distribution 𝐹𝑋
𝑢 can be asymptotically approximated as 𝑢 → +∞ by a GPD 

(a result often referred to as Pickands–Balkema–de Haan theorem). The GPD is denoted 

by 𝐺𝜉,𝜎, given by the following: 

𝐺𝜉,𝜎(𝑥) = 1 − 𝑝 (1 +
𝜉(𝑥 − 𝑢)

𝜎
)

−1 𝜉⁄

, 𝑥 > 𝑢 (2) 

where 𝑥 > 0 represents a given value of exceedances, 𝑝 represents the tail probability of 

exceedances over a sufficiently high threshold 𝑢 (𝑝 = 1 − 𝐺𝜉,𝜎(𝑢)), 𝜎 > 0 is the scale 

parameter and 𝜉 ∈ ℝ is the tail index. This theoretical result about the limit distribution 

of exceedances holds when the threshold 𝑢 goes to the upper endpoint 𝑥𝐹𝑋
 of the 

distribution. In practice, as the dataset contains a finite number of observations, 𝑢 used 

 

 

2 A counting process (e.g. the number of exceedances occurring in a time period) with a rate 𝜆(𝑡) 

is called a nonhomogeneous Poisson process. Specifically, let 𝑇 > 0 be a real number and 𝑁 = {𝑁𝑡: 𝑡 ∈
[0, 𝑇]} be the process recording the number of values exceeding the threshold 𝑢 until time 𝑇. The random 

variable 𝑁𝑡 which represents the number of exceedances in the time interval [0, 𝑡), 𝑡 ≥ 0, follows a Poisson 

distribution with rate function 𝜆(𝑡). 
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for the estimation of the model is also finite. However, 𝑢 should be high enough to ensure 

that the asymptotic theory, which underlies the GPD approximation, is valid and reliable. 

For the GPD, 𝑢 is equivalent to selecting the sample fraction (𝑘𝑛) considering only the 

𝑘𝑛 upper order statistics of the sequence 𝑋(1) ≤ ⋯ ≤ 𝑋(𝑘𝑛) ≤ ⋯ ≤ 𝑋(𝑛), where 𝑛 ≫ 𝑘𝑛 

(see Leadbetter et al., 1983 for the characterization of 𝑘𝑛 for specific distributions). In 

this case, as 𝑛 → +∞, the 𝑘𝑛 → +∞ such that 𝑘𝑛/𝑛 → 0. Consequently, this implies that 

as the sample size 𝑛 increases, the threshold 𝑢 is also increased, at a faster rate though. 

With these notations, when 𝜉 > 0, 𝐺𝜉,𝜎 corresponds to a heavy-tailed distribution 

(Fréchet type distribution). When 𝜉 → 0, 𝐺𝜉,𝜎(𝑥) → 1 − 𝑒𝑥𝑝(−𝑥/𝜎), which is an 

exponentially declining tail distribution and corresponds to a thin-tailed distribution 

(Gumbel type distribution). When 𝜉 < 0, 𝐺𝜉,𝜎 corresponds to a distribution with a finite 

tail (Weibull type distribution).  

For return distributions used in financial modeling, considering that the 

distribution of return exceedances is not exactly known, the asymptotic behavior of return 

exceedances can be used. Thus, we can easily compute the parameters of the limit 

distribution. For example, the normal distribution leads to a GPD with 𝜉 = 0. The 

Student-t distributions and stable Paretian laws lead to a GPD with 𝜉 > 0. Furthermore, 

the GPD can be extended to processes based on the normal distribution, such as 

autocorrelated normal processes, discrete mixtures of normal distributions and mixed 

diffusion jump processes. They all have thin tails and their domain of attraction is a GPD 

with 𝜉 = 0. De Haan et al. (1989) showed that if returns follow a GARCH process, then 

the extreme return has a GDP with 𝜉 > 0. 

3.2 Multivariate modeling of extremes 

The multivariate extreme value theory aims to quantify the strength of the 

dependence structure of extremes. In particular, multivariate extreme value analysis refers 

to the estimation of the joint probability of extreme events occurring together 

simultaneously. In the bivariate setting, a widely used nontrivial asymptotically 

dependent joint distribution is the logistic model. In what follows, first, we provide the 

general theoretical framework for modeling the dependence structure of extremes. Then, 

we discuss the statistical characterization of the bivariate tail dependence. Finally, we 

present the bivariate parametric models employed. 
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Modeling the dependence structure of extremes: A general framework 

Consider a bidimensional vector of random variables denoted as 𝑋 =  (𝑋1 , 𝑋2), 

with a bivariate distribution function 𝐹𝑋 and an unknown dependence structure 𝐷𝑋. The 

bivariate return exceedances correspond to the vector of univariate return exceedances, 

defined with a bidimensional vector of thresholds 𝑢 = (𝑢1, 𝑢2). Modeling the joint tail of 

distribution 𝐹𝑋 entails two distinct aspects. The first one is the modeling of the tail of each 

marginal distribution (univariate aspect), while the second one is the modeling of 

dependence structure 𝐷𝑋 within the joint tail (bivariate aspect). 

In approaching the issue of modeling the dependence structure of vector 𝑋, the 

most commonly used heuristic method is through copulas. Copulas allow us to 

decompose the bivariate distribution into each margin and its joint behavior. In a general 

respect, a 𝑞-dimensional copula is a multivariate distribution in [0,1]𝑞 interval, while the 

marginal distributions - transformed in initial margins of distribution 𝐹𝑋 - are uniform on 

the [0,1] interval (Sklar, 1959). In the study of bivariate dependence structure, 𝑞 is equal 

to 2. By definition, under a common bivariate probability distribution 𝐹𝑋 of vector 𝑌 of 

the transformed random variables 𝑌1 = 𝐹𝑋1 
(𝑋1) and 𝑌2 = 𝐹𝑋2

(𝑋2), a copula function, is 

defined as follows: 

𝐶(𝑦1, 𝑦2) = 𝑃𝑟(𝑌1 ≤ 𝑦1, 𝑌2 ≤ 𝑦2) = 𝐹 (𝐹𝑋1 

−1(𝑦1), 𝐹𝑋2 

−1(𝑦2 )) , 𝑦1, 𝑦2 ∈ [0,1] (3) 

The vector (𝑌1, 𝑌2) is described by the same dependence structure as in (𝑋1 , 𝑋2). The 

initial function 𝐹𝑋 can be expressed with a copula function as 𝐹𝑋(𝑥)  =

 𝐶(𝐹𝑋1 
(𝑥1), 𝐹𝑋2

(𝑥2)), which is an efficient transformation of 𝐹𝑋 into 𝐶 and into univariate 

marginal distribution functions 𝐹𝑋1 
 and 𝐹𝑋2 

 (see Reiss and Thomas, 2001). 

The above discussion applies to the general case, though. As our aim is to model 

the dependence structure of extremes, the common practice is to assume that 𝐹𝑋 is in the 

domain of attraction of a bivariate extreme value distribution (or equivalently an extreme 

value copula) with standard Fréchet margins. Fréchet margins is the appropriate statistical 

transformation for vector 𝑋 when dealing with extremes with heavy-tailed behavior and 

tail dependence (Ledford and Tawn, 1997). This transformation removes the influence of 

marginal aspects such that the differences in distributions are ascribed to the dependence 

aspects alone. Therefore, unlike linear measures of dependency, the measures used in this 

study are no longer influenced by the form of the marginal distribution (Embrechts et al., 

1997). Fréchet margins display either negative or positive dependence, defined as Fréchet 
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lower and upper bound copulas, which correspond to the limit cases of extreme 

dependence (Yang et al., 2009). The Fréchet margins are given by 𝑍1 = −1 log𝐹𝑋1 
(𝑋1 )⁄  

and 𝑍2 = −1 log𝐹𝑋2
(𝑋2)⁄  for 𝑋1  and 𝑋2, respectively, where 𝐹𝑋1 

 and 𝐹𝑋2
 are the 

corresponding marginal distribution functions. Furthermore, 𝑃𝑟(𝑍1 > 𝑢) = 𝑃𝑟(𝑍2 >

𝑢) ~ 𝑢−1 as 𝑢 → ∞ (𝑢1 = 𝑢2 denoted by 𝑢 for simplicity). Since variables 𝑍1 and 𝑍2 are 

on the same scale, this gives the same probability weight of extreme events for each 

variable. In practice, as the marginal distributions 𝐹𝑋1 
 and 𝐹𝑋2

 are unknown, we replace 

their tails with the approximate tail form presented in Equation (2). 

Statistical characterization of the bivariate tail dependence 

In the study of the dependence structure of extremes, it is important to understand 

whether the components of a bivariate random vector exhibit asymptotic independence 

or asymptotic dependence. We now explain how these two classes of dependence 

structure allow for specific inferences about the joint occurrence of extreme events. In the 

asymptotic independence case, large values in both variables appear simultaneously less 

often than in the asymptotic dependence case. The fundamental difference between the 

two classes of dependence structure emerges as we approach the upper limits of the two 

variables. As for asymptotically independent variables, while one of the variables tends 

to its upper limit, the likelihood of the other being also close to its upper limit is equal to 

0; yet, as for asymptotically dependent variables, the likelihood of both variables being 

close to their upper limit is always greater than 0. In other words, extreme events do not 

appear at the same time in the case of asymptotic independence and may appear at the 

same time in the case of asymptotic dependence. Moreover, the likelihood of extreme 

events occurring simultaneously increases as the dependence becomes stronger (in the 

special case of total dependence, extreme events always appear simultaneously). In 

technical terms, this phenomenon can be quantified by computing the following joint 

probability: 

lim
𝑢→∞

𝑃𝑟(𝑍1 > 𝑢|𝑍2 > 𝑢) = 𝜒 (4) 

where 𝜒 = 0 for asymptotic independence, 𝜒 > 0 for asymptotic dependence, and 𝜒 = 1 

for total dependence (see Sibuya, 1960; de Haan and Resnick, 1977; Ledford and Tawn, 

1996). 

Following from the previous discussion, asymptotic independence is reached in 

many cases. If the components of the distribution are independent, the exact independence 
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of extremes is obtained as expected. But even if the components of the distribution are 

dependent, asymptotic independence can arise. A well-known example is the multivariate 

normal distribution (Galambos, 1978). Note that in practice, as the number of 

observations is finite (with the threshold 𝑢 being also finite), it may be difficult to identify 

asymptotic independence because a finite sample exhibits residual dependence for any 

finite threshold. Consequently, although the limit in Equation (4) is equal to 0 in the 

asymptotic independence case, the joint probability is different from 0 before the limit is 

reached (see de Haan and Zhou, 2011). 

Modeling the bivariate tail dependence 

In the bivariate modeling, we transform our data into unit Fréchet margins for 

exceedances defined by the threshold 𝑢. Then, in line with Longin and Solnik (2001), and 

Poon et al. (2004), we consider asymptotically independent and dependent parametric 

models in order to study the issue of independence and dependence of extremes. In this 

case, the joint tail form of the bivariate distribution 𝐹𝑋 plays a central role. As in the 

univariate case, the bivariate distribution 𝐹𝑋 is not precisely known. Thus, the existing 

bivariate extreme value models are based on a bivariate asymptotic distribution (Resnick, 

1987). As the threshold 𝑢 tends to the upper endpoint 𝑥𝐹𝑋
, the bivariate excess distribution 

𝐹𝑋
𝑢 can only converge towards a distribution 𝐺𝑋 characterized by a GPD for each margin 

and a dependence function 𝐷𝑋. The 𝐷𝑋 must satisfy the following condition: 

𝐺𝑋(𝑦1, 𝑦2) = 𝑒𝑥𝑝 (−𝐷𝑋 (−
1

𝑦1
, −

1

𝑦2
)) , 𝑦1, 𝑦2 > 0 (5) 

where 𝑦1 = −1/log𝐺𝜉,𝜎(𝑥1) and 𝑦2 = −1/log𝐺𝜉,𝜎(𝑥2). It is clear from Equation (5) that 

the bivariate asymptotic distribution 𝐺𝑋 is not completely specified, as the shape of the 

dependence function 𝐷𝑋 is not known, and therefore it has to be modeled. 

As for the class of asymptotically independent models, the dependence function 

𝐷𝑋 is characterized by the following: 

𝐺𝑋(𝑦1, 𝑦2) = 𝑒𝑥𝑝 (− (
1

𝑦1
+

1

𝑦2
)) (6) 

To model the asymptotically independent components over a threshold 𝑢, Bortot et al. 

(2000) suggested the Gaussian model for Fréchet margins. This parametric model is a 

special case of the general tail model of Ledford and Tawn (1997) which includes both 

asymptotically independent and asymptotically dependent distributions. The Gaussian 

model for Fréchet margins is given by the following: 
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𝐺𝑋(𝑦1, 𝑦2) = Φ2 (Φ−1 (𝑒𝑥𝑝 (−
1

𝑦1
)) , Φ−1 (𝑒𝑥𝑝 (−

1

y2
)) ; 𝜌) , 𝜌 < 1 (7) 

where Φ is the standard univariate normal distribution, while Φ2 is a bivariate normal 

distribution with 𝜇 = (0, 0), having correlation matrix Σ = (
1 𝜌
𝜌 1

). The off-diagonal 

element corresponds to the correlation parameter which is considered the dependence 

parameter 𝜌. This model is computed from the multivariate Gaussian distribution with 

Fréchet margin transformation. As shown by Bortot et al. (2000), the parameter 𝜌 captures 

the dependency of the bivariate normal distribution with transformed margins used to 

model the tails of the distribution. In the special case where the dependence structure over 

the whole distribution is normal, 𝜌 is equal to the Pearson correlation.3 

As for the class of asymptotically dependent models, we employ the logistic 

model proposed by the form of the dependence function of the Gumbel-Hougaard copula 

(see Gumbel, 1960; 1961; Hougaard, 1986) for Fréchet margins, as follows: 

𝐺𝑋(𝑦1, 𝑦2) = 𝑒𝑥𝑝 (−(𝑦1
−1/𝛼

+ 𝑦2
−1/𝛼

)
𝛼

)  (8) 

This model contains the special cases of asymptotic independence and total dependence. 

It is parsimonious, as we only need one parameter to model the bivariate dependence 

structure of exceedances, i.e., the dependence parameter 𝛼 with 0 < 𝛼 ≤ 1. The 

correlation of exceedances 𝜌 (also called extreme correlation) can be computed from the 

dependence parameter 𝛼 of the logistic model as follows: 𝜌 =  1 − 𝛼2. The special cases 

where 𝛼 is equal to 1 and 𝛼 converges towards 0 correspond to asymptotic independence, 

in which 𝜌 is equal to 0, and total dependence, in which 𝜌 is equal to 1, respectively 

(Tiago de Oliveira, 1973). 

The multivariate extreme value theory based on sufficiently large samples enables 

efficient inferences for the dependence structure of extremes. In practical applications, 

however, the limited number of exceedances, which is reduced as we move towards the 

endpoints of the distribution, induces a small sample estimation bias. Concerning the 

 

 

3 The Pearson correlation is a measure of the linear dependence between two variables; thus, it is 

not a sufficient measure of dependency when conditioning on extremes in the distribution tails. The Pearson 

correlation is estimated as the average of deviations of observations from the sample mean. The weight of 

observations in the distribution tails is equal to the weight of other observations. The Pearson correlation as 

a measure of extreme dependence has been called into question by Longin and Solnik (2001), Forbes and 

Rigobon (2002) and Embrechts et al. (2010), among others. 
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logistic model, further evidence provided by Huser et al. (2016) showed that the 

likelihood estimators (including the censored estimator) tend to overestimate the strength 

of dependence, as it becomes weaker in the case of finite samples. To reduce the 

estimation bias, we estimate a bias-corrected correlation of exceedances via a parametric 

bootstrap simulation. To this end, following Stephenson (2003), we simulate bivariate 

random samples from a bivariate extreme value distribution of a logistic type model.4 

3.3 Statistical tests related to normality and dependency 

We provide statistical tests based on the extreme correlation to study the issues of 

normality and dependency. From a practical point of view, these tests combine a statistical 

framework that can be used as a screening tool to deploy diversification possibilities 

between assets that are less vulnerable to non-diversifiable extreme risk. A statistical 

formalization of this problem provides a formal characterization of the level and degree 

of dependence between assets in periods of stress. As mentioned previously, for the two 

types of dependency (i.e., asymptotic independence and asymptotic dependence), the 

characteristics of returns are fundamentally different in terms of behavior, as these returns 

become more extreme. Although these two types permit dependency between moderately 

large values of two variables, extreme returns can occur at the same time only when 

asymptotic dependence exists. The knowledge of such a result is particularly important 

for portfolio risk management in order to control joint risk exposures. 

First, we test if the observed extreme correlation corresponds to the case of 

normality. Any statistical deviation from normality is important in practice, as normality 

remains the standard assumption for modeling returns in asset management. Indeed, if the 

assumption of bivariate normality is violated, the use of normality could provide 

misleading results to describe portfolio risk under extreme market conditions, and then 

result in misguided diversification strategies. Second, we test if the observed extreme 

 

 

4 The maximum likelihood procedure has been shown to provide asymptotically unbiased 

estimates of the parameters of the model used. Of all the unbiased estimators, the maximum likelihood 

estimator has the smallest standard error (see Hosking and Wallis, 1987; van Gelder et al., 1999). In the 

case of fairly large samples, the maximization of the likelihood function with respect to the vector of the 

parameters allows us to numerically calculate reliable standard errors and confidence intervals (Coles et 

al., 2003). However, as noted by Koch et al. (1991), the maximum likelihood procedure does not always 

give unbiased estimates of the parameters. For example, in the case of small samples, there are significant 

computational problems inducing estimation bias (see e.g. Chaouche and Bacro, 2006). To avoid such types 

of bias, we apply a parametric bias-corrected approach based on the maximum likelihood procedure 

estimating a minimum variance unbiased estimator. 
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correlation corresponds to the case of independence or the case of total dependence. More 

importantly, we are interested in knowing if the joint occurrence of extreme returns in 

equity markets is significantly higher than that in the case of asymptotic independence. A 

statistical deviation from independence implies that the diversification benefits are 

limited, and even eliminated in the case of total dependence. 

With respect to normality, we consider the following two cases: the asymptotic 

case and the finite-sample case. The asymptotic case corresponds to the theoretical case 

of an infinite number of observations, where the correlation of normal return exceedances 

is obtained as the limit when the threshold used to select extremes tends to infinity. In this 

case, the extreme correlation, denoted by 𝜌𝑛𝑜𝑟
𝑎𝑠𝑦

, is theoretically equal to 0 (Galambos, 

1978). We also consider the finite-sample case because, as we discussed in subsection 

3.2, it is not always possible to identify asymptotic independence with finite samples. 

This case corresponds to the empirical case of a finite number of observations, where the 

correlation of the normal return exceedances is computed with a given threshold 𝑢. In this 

case, the extreme correlation, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), is greater than 0 (but decreasing 

towards 0 when the threshold tends to the endpoint of the distribution, that is +∞ for the 

normal distribution). 

− 𝐻0: 𝜌 = 0. We test the null hypothesis of asymptotic normality. That is, if 

the observed extreme correlation is equal to the extreme correlation in the 

asymptotic case obtained with a normal distribution of returns, 𝜌𝑛𝑜𝑟
𝑎𝑠𝑦

, 

which is equal to 0. 

− 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢). We test the null hypothesis of normality in the finite-

sample case, that is, if the observed extreme correlation is equal to the 

extreme correlation in the finite-sample case obtained with a normal 

distribution of returns. In the finite-sample case, we compute 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢) over 

a given finite threshold 𝑢 by simulation, assuming that the returns follow 

a bivariate normal distribution with parameters equal to the empirically 

observed means and covariance matrix of returns. The 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢) is 

estimated via the logistic model given by Equation (8). 

With respect to the issue of dependency, we consider the following two limit 

cases: independence and total dependence. The former case corresponds to an extreme 

correlation, 𝜌𝑖𝑛𝑑, which is equal to 0, and the latter to an extreme correlation, 𝜌𝑑𝑒𝑝, which 

is equal to 1. 
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− 𝐻0: 𝜌 = 0. We test the null hypothesis of asymptotic independence of 

extremes, that is, if the observed extreme correlation is equal to the 

extreme correlation obtained under asymptotic independence of extremes, 

 𝜌𝑖𝑛𝑑, which is equal to 0. 

− 𝐻0: 𝜌 = 1. We test the null hypothesis of total dependence of extremes, 

that is, if the observed extreme correlation is equal to the extreme 

correlation obtained under total dependence of extremes,  𝜌𝑑𝑒𝑝, which is 

equal to 1. 

4. Empirical results 

This section presents our empirical results. First, we present the data, explain the 

data adjustments necessary to work with stationary time series and employ a data 

visualization procedure using nonparametric copulas to obtain preliminary evidence of 

the tail dependence patterns. Second, we present the parameter estimates of the bivariate 

model for the tail dependence structure. Third, we discuss the main findings of our study. 

4.1 Data, data adjustments and data visualization 

We analyze the tail dependence structure of international equity markets, i.e., 

Europe and the United States, vis-à-vis bitcoin and gold in a pairwise comparison. For 

the equity market in Europe (EU), we use the STOXX Europe 600 index, and for the 

equity market in the United States (US), we use the S&P 500 index. Both indices include 

the most heavily traded and liquid stocks with the largest market capitalization of their 

geographical zone. 

Our empirical study covers the time-period from April 19, 2013 to April 17, 2018. 

Although bitcoin was first traded in 2010, we opt for the starting date of April 19, 2013 

to avoid unreliable and spurious results due to the very low liquidity and resulting price 

variability of bitcoin during that period. From April 19, 2013, when bitcoin prices broke 

the $100 threshold for the first time, the impact of liquidity on market prices became less 

important. In our study, we consider weekly returns to avoid the time lag bias between 
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the equity markets in Europe and the United States.5 The data for the STOXX Europe 600 

and S&P 500 indices, bitcoin and gold come from Bloomberg.6 

For each time series of returns, we apply a data adjustment procedure based on 

the work of Gallant et al. (1992) to remove trends and apply the work of McNeil and Frey 

(2000) to take into account heteroskedasticity due to clusters. Thus, we limit the sample 

bias observed for serially correlated and clustered data. We describe in detail our data 

adjustment procedure in Appendix 2. 

Finally, as a preliminary analysis, we use nonparametric copulas to provide a 

graphical visualization of the dependence patterns in our data. In Appendix 3, we present 

the statistical procedure based on surface plots obtained with a kernel-type copula density 

estimator. Following our four-step research strategy, we find graphical evidence of strong 

tail dependence between the European and US equity markets during stock market 

crashes and weak tail dependence between equity markets and bitcoin or gold both in bear 

and bull markets. We also find a weak tail dependence between bitcoin and gold. These 

results offer early recognition of the role of bitcoin and gold as diversifiers. Next, we 

quantify this preliminary evidence of the tail dependencies with parametric copulas. 

4.2 Estimation of the parameters of the bivariate model 

We now discuss the estimation of the parameters of the bivariate model for the 

tail dependence structure. In line with our four-step research strategy, we present our 

empirical results in four sets of tables. We adopt this description plan in order to keep the 

paper consistent in terms of the presentation of the results over the sections. 

Table 1 refers to the bivariate tail dependence structure between the equity 

markets in Europe and the United States (EU/US). Table 2 refers to the bivariate tail 

dependence structure between each equity market and bitcoin, i.e., Table 2A for Europe 

 

 

5 The US equity market is the last to close on a trading day compared to the European one. 

Therefore, due to the time lag, it is likely that extreme price movements in the US equity market affect the 

European equity market within the next days. Rapach et al. (2013) pointed out the leading role of the US 

equity market as they found strong evidence that lagged US returns have significant predictive power for 

non-US returns. 
6 For bitcoin prices, we use the bitcoin Bloomberg Index (Code: XBT). Using a sophisticated 

pricing algorithm, Bloomberg computes the bitcoin index as a weighted-average of mid-prices derived from 

bid and ask quotes from multiple approved Cryptocurrency Pricing Sources (approved exchanges following 

anti-money laundering (AML) and know your customer (KYC) policies, and providing an organizational 

and/or ownership chart). In practice, the exchanges selected by Bloomberg are mainly located in Europe 

and North America that are integrated geographical zones with the same playing field in terms of fiscal and 

financial regulations. 
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and bitcoin (EU/BTC) and Table 2B for the United States and bitcoin (US/BTC). Table 

3 refers to the bivariate tail dependence structure between each equity market and gold, 

i.e., Table 3A for Europe and gold (EU/Gold) and Table 3B for the United States and gold 

(US/Gold). Table 4 refers to the bivariate tail dependence structure between bitcoin and 

gold (BTC/Gold). Overall, we study the following pairs among international equity 

indices, bitcoin and gold, namely, EU/US, EU/BTC, US/BTC, EU/Gold, US/Gold and 

BTC/Gold. For each table, Panel A refers to the negative return exceedances in the left 

tail of the distribution and Panel B to the positive return exceedances in the right tail. 

We provide maximum likelihood estimates of the parameters of the bivariate 

extreme distribution for both the fixed and optimal thresholds. We define the fixed 

threshold (i.e., selected before fitting) with tail probability levels across the entire range 

of the left and right distribution tails of returns as follows: 50%, 40%, 30%, 20%, 10% 

and 5%. For each pair, we use the same value of probability level 𝑝 to define the return 

exceedances in each time series. We also compute the optimal thresholds by following 

the procedure described in Appendix 4. As explained by Jansen and de Vries (1991), 

optimal thresholds optimize the trade-off between inefficiency and sample bias. A low 

threshold value induces a significant estimation bias due to the observations not belonging 

to the distribution tails considered as exceedances. A high threshold value leads to 

inefficiency with increasing standard errors due to the reduced size of the estimation 

sample. We report the estimates obtained with an optimal threshold on the last line of 

each panel. In total, the following parameters are reported: the threshold 𝑢 associated with 

the tail probability 𝑝, the dispersion parameter , the tail index 𝜉 for each series, the 

dependence parameter 𝛼 of the logistic function used to model the dependence between 

extreme returns, the correlation of return exceedances 𝜌, and in the last columns the Wald 

tests of the statistical hypotheses presented in subsection 3.3. We also provide the 

standard errors of the estimates in parentheses, whereas the 𝑝-values for the 

corresponding Wald tests are in brackets. 

A graphical representation of our estimates in Tables 1-4 is also given in Figures 

1-4, corresponding to each step of our research strategy. In these figures, we depict the 

evolution of the correlation of return exceedances moving towards the distribution tails. 

The value of the tail probability 𝑝 is used to define return exceedances associated with a 

threshold 𝑢. These figures also graphically capture the potential asymmetry between 

negative and positive return exceedances in the left and right distribution tails. The solid 
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line represents the correlation between the actual return exceedances obtained from the 

estimation of the bivariate distribution modeled via the logistic model. The dotted line 

represents the theoretical correlation in the finite-sample case between the simulated 

normal return exceedances, assuming a bivariate normal return distribution with 

parameters equal to the empirically observed means and covariance matrix of returns. 

4.3 Main empirical results 

We now present our main empirical results about the estimation of the parameters 

of the bivariate model for the tail dependence structure. We follow our four-step research 

strategy highlighting the most important findings in each step and providing key 

comparisons. 

Step 1: Equity markets 

Table 1 refers to the bivariate tail dependence structure between the equity 

markets in Europe and the United States (EU/US). We confirm the stylized fact of the 

behavior of equity markets during extremely volatile periods. We find that the tail 

dependence increases in bear markets and decreases in bull markets. Such evidence 

indicates that traditional dependence measures used to model extreme co-movements in 

equity markets are inadequate and could lead to inaccurate portfolio diversification 

strategies. In one of the first works on this matter, Longin and Solnik (2001) found similar 

results between the main European equity markets (France, Germany, the United 

Kingdom) and the US equity market. The level of extreme correlation during stock market 

crashes is even higher in our study, which uses a more recent time period, i.e., 0.878 vs 

0.571 for the correlation for negative return exceedances at optimal threshold levels. The 

level of extreme correlation during stock market booms is also higher in our study, i.e., 

0.384 vs 0.140 for the correlation for positive return exceedances. Chabi-Yo et al. (2018) 

also found a general tendency for stronger asymptotic dependence in the left tail than in 

the right tail of the return distribution in the recent period, reflecting more integrated 

international stock markets. 

More specifically, for negative return exceedances (Panel A), we observe that the 

correlation of return exceedances 𝜌 slightly increases across the left tail of the 

distribution. It is equal to 0.888 for 𝑝 = 50% and 0.890 for 𝑝 = 5%. The correlation of the 

return exceedances 𝜌 at the optimal thresholds is equal to 0.878. With respect to 

asymptotic normality, we reject the null hypothesis, i.e., 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟
𝑎𝑠𝑦

, as the first Wald 



19 

test shows, across the entire range of the left distribution tail. The value of this test is 

equal to 26.641 for 𝑝 = 50% and 203.487 for 𝑝 = 5%. At the optimal thresholds, it is equal 

to 63.419 and leads to a strong rejection of the null hypothesis. With respect to normality 

in the finite-sample case, we also reject the null hypothesis, i.e., 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), moving 

to the left endpoint of the distribution for tail probability levels lower than 20%, as the 

second Wald test suggests. The value of this test is equal to 0.694 for 𝑝 = 50%, 2.152 for 

𝑝 = 20%, and 3.726 for 𝑝 = 5%. At the optimal thresholds, it is equal to 3.130 and leads 

to the rejection of the null hypothesis. Hence, the probability of large losses occurring at 

the same time in the two markets is significantly higher than under the hypothesis of 

bivariate normality, let alone in the case of asymptotic normality. With respect to the 

asymptotic independence of extremes, as expected, we reject the null hypothesis, i.e., 

𝐻0: 𝜌 = 0, as the first Wald test shows, across the entire range of the left distribution tail. 

With respect to the total dependence of extremes, we reject the null hypothesis: 𝐻0: 𝜌 =

1 for all threshold values. The value of this test is equal to 3.256 for 𝑝 = 50% and 25.008 

for 𝑝 = 5%. At the optimal thresholds, it is equal to 8.678 and leads to a strong rejection 

of the null hypothesis. Although the tests suggest a strong rejection of the null hypothesis, 

the correlation of the return exceedances 𝜌 is still high enough to provide diversification 

benefits during periods of extreme price volatility in equity markets. 

As for positive return exceedances (Panel B), we observe that the correlation of 

return exceedances 𝜌 declines across the right tail of the distribution. It is equal to 0.864 

for 𝑝 = 50% and 0.521 for 𝑝 = 5%. The correlation of return exceedances 𝜌 at the optimal 

thresholds is equal to 0.384. With respect to asymptotic normality, we reject the null 

hypothesis, i.e., 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟
𝑎𝑠𝑦

, as the first Wald test shows, across the entire range of the 

right distribution tail. The value of this test is equal to 24.194 for 𝑝 = 50% and 17.260 for 

𝑝 = 5%. At the optimal thresholds, it is equal to 61.206 and leads to a strong rejection of 

the null hypothesis. Furthermore, unlike negative return exceedances, with respect to 

normality in the finite-sample case, we cannot reject the null hypothesis, i.e., 𝐻0: 𝜌 =

𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), moving to the right endpoint of the condition distribution for all values of 𝑢 

under consideration, as the second Wald test suggests. The value of this test is equal to 

0.169 for 𝑝 = 50% and 0.548 for 𝑝 = 5%. At the optimal thresholds, it is equal to 0.199. 

With respect to the asymptotic independence of extremes, we reject the null hypothesis, 

i.e., 𝐻0: 𝜌 = 0, as the first Wald test shows, across the entire range of the right distribution 

tail. With respect to the total dependence of extremes, we reject the null hypothesis, i.e., 
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𝐻0: 𝜌 = 1, of total dependence in all cases. The value of this test is equal to 27.155 for 𝑝 

= 50% and 32.592 for 𝑝 = 5%. At the optimal thresholds, it is equal to 90.987 and leads 

to a strong rejection of the null hypothesis. 

The asymmetry between negative and positive return exceedances is confirmed 

by Figure 1, which refers to the bivariate tail dependence structure between the European 

and US return exceedances (EU/US). As shown in Figure 1, the correlation of negative 

return exceedances is always greater than the correlation of positive return exceedances. 

Step 2: Equity markets and bitcoin 

Tables 2A and 2B refer to the bivariate tail dependence structure between each 

equity market and bitcoin, i.e., Europe and bitcoin (EU/BTC) and the US and bitcoin 

(US/BTC). In this step, we combine each equity market with bitcoin to assess the potential 

diversification benefits of bitcoin in times of stress. Contrary to Step 1 for equity markets, 

we find that the tail dependence between each equity market and bitcoin decreases in both 

bear and bull markets. Thus, bitcoin could provide significant diversification benefits to 

investors against adverse price market movements. Given that high levels of tail 

dependence indicate greater risk exposures when a crisis occurs, investors should identify 

positions that present low levels of tail dependence to protect their positions. As shown 

by the results, bitcoin can play the role of the diversifier. 

More specifically, as for Table 2A for the pair EU/BTC, we observe that the 

dependency declines moving towards the distribution tails. Regarding negative return 

exceedances (Panel A), the correlation of return exceedances 𝜌 is equal to 0.477 for 𝑝 = 

50% and 0.019 for 𝑝 = 5%. Compared to Step 1, this means that potential diversification 

benefits can better be achieved by holding bitcoin with the European equity position. 

Regarding positive return exceedances (Panel B), the correlation of return exceedances is 

equal to 0.609 for 𝑝 = 50% and 0.084 for 𝑝 = 5%. Furthermore, we cannot reject the null 

hypothesis of normality, i.e., 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), in the finite-sample case, in which the 

correlation of the return exceedances is statistically equal to the correlation obtained with 

a bivariate normal distribution. This means that the probability of large losses occurring 

at the same time in the two markets is not significantly higher than under the hypothesis 

of bivariate normality. There is also strong evidence, that this probability decreases as we 

move further in the tails of the distribution. For Table 2B for the pair US/BTC, a similar 

conclusion is drawn. The dependency declines moving towards the distribution tails. 

Thus, we cannot reject the null hypothesis that the correlation of return exceedances 
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follows a bivariate-normal distribution in most fixed thresholds in both distribution tails. 

Regarding negative return exceedances (Panel A), the correlation of return exceedances 

is equal to 0.547 for 𝑝 = 50% and 0.123 for 𝑝 = 5%. Regarding positive return 

exceedances (Panel B), the correlation of return exceedances is equal to 0.599 for 𝑝 = 

50% and 0.200 for 𝑝 = 5%. 

Figures 2A and 2B depict the bivariate tail dependence structure between each 

equity market and bitcoin (EU/BTC and US/BTC). Unlike Figure 1 for equity markets 

alone, we observe that the extreme correlation for both negative and positive return 

exceedances decreases when we go further into the tails. Moreover, this statistical 

behavior appears to be symmetric. 

Step 3: Equity markets and gold 

Tables 3A and 3B refer to the bivariate tail dependence structure between each 

equity market and gold, i.e., Europe and gold (EU/Gold) and the US and gold (US/Gold). 

In this step, we combine each equity market with gold to confirm its well-known 

diversification benefits in times of extreme price volatility. Similarly, as in Step 2, we 

find that the tail dependence between each equity market and gold decreases in bear 

markets. Therefore, it confirms the status of gold as a safe haven. 

More specifically, as for Table 3A for the pair EU/Gold, we find that the 

dependency declines moving towards the distribution tails. We observe quite similar 

bivariate patterns among the dependency of return exceedances between the pairs of each 

equity market and bitcoin or gold. The correlation of return exceedances is equal to 0.522 

for 𝑝 = 50% and 0.060 for 𝑝 = 5% for negative return exceedances (Panel A). Regarding 

positive return exceedances (Panel B), the correlation of return exceedances is equal to 

0.606 for 𝑝 = 50% and 0.372 for 𝑝 = 5%. For Table 3B for the US/Gold pair, a similar 

conclusion is obtained. The dependency declines moving towards the distribution tails. 

Furthermore, for most fixed thresholds in both distribution tails, we cannot reject the null 

hypothesis of normality in the finite-sample case, i.e., 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), in which the 

correlation of return exceedances is statistically equal to the correlation obtained with a 

bivariate normal distribution. Regarding the negative return exceedances (Panel A), the 

correlation of the return exceedances is equal to 0.558 for 𝑝 = 50% and 0.089 for 𝑝 = 5%. 

Regarding the positive return exceedances (Panel B), the correlation of the return 

exceedances is equal to 0.614 for 𝑝 = 50% and 0.259 for 𝑝 = 5%. 
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Figures 3A and 3B depict the bivariate tail dependence structure between each 

equity market and gold (EU/Gold and US/Gold). In contrast with Figure 1 for equity 

markets only, the extreme correlation for both negative and positive return exceedances 

decreases when we go further into the tails. As in the case of bitcoin (Figures 2A and 2B), 

this statistical behavior also appears to be symmetric. 

Step 4: Bitcoin and gold 

Table 4 refers to the bivariate tail dependence structure between bitcoin and gold 

(BTC/Gold). In this step, we consider a position in bitcoin and gold only to observe if 

both assets can provide diversification benefits against extreme market downturns at the 

same time. We find that the tail dependence between bitcoin and gold decreases in both 

bear and bull markets. Thus, this indicates that both bitcoin and gold can be used together 

as complementary diversifiers in times of turbulence of financial markets. 

As for Table 4, the dependency also declines moving towards the distribution tails. 

We cannot reject the null hypothesis of normality, i.e., 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), in the finite-

sample case, in which the correlation of return exceedances is statistically equal to the 

correlation obtained with a bivariate normal distribution for most fixed thresholds in both 

distribution tails. More specifically, the correlation of negative return exceedances (Panel 

A) is equal to 0.520 for 𝑝 = 50% and 0.083 for 𝑝 = 5%. The correlation of positive return 

exceedances (Panel B) is equal to 0.590 for 𝑝 = 50% and 0.106 for 𝑝 = 5%. 

Figure 4 depicts the bivariate tail dependence structure between bitcoin and gold 

(BTC/Gold). We observe that the extreme correlation for both the negative and positive 

return exceedances decreases when we go further into the tails. 

5. Bitcoin vs gold 

In this section, we evaluate the diversification benefits of using bitcoin and gold 

together during periods of stress in equity markets. We first discuss the general economic 

backdrop of bitcoin and gold. We then compare the extreme correlation between equity 

markets and bitcoin or gold. Finally, we assess the joint potential of bitcoin and gold as 

diversifiers for equity positions. 

5.1 Economic backdrop 

Bitcoin and gold are two fundamentally different assets in several respects. On 

the one hand, bitcoin is a decentralized digital currency without physical form and 
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apparently much newer than gold. At first blush, bitcoin exhibited a very shadowy 

background related to theft, fraud and criminal activity (see e.g. Gandal et al., 2018). It 

also appears that bitcoin is free of sovereign risk, as it is independent from regulatory 

authorities, central banks and governments.7 On the other hand, gold has a very good 

reputation having the trust of the financial community and displaying the willingness of 

investors to hold positions in it. Investors continue to believe that gold can be used as a 

hedge against a declining US dollar and rising inflation. It is also one of the first forms of 

money and thus keeps its purchasing power in the long run. But apart from their 

differences, bitcoin and gold also present some key similarities. Primarily, they are both 

nonproductive assets and speculative investments, as they do not produce future cash 

flows. Interestingly enough, bitcoin and gold have both been characterized as safe havens. 

However, is really bitcoin as good as gold for investors? 

Gold has long been identified as a safe haven with an indisputable track record 

spanning more than 5,000 years of history, as well as being a physical store of value 

across human civilizations. Although there is no theory explaining why gold is commonly 

referred to as a safe haven - as pointed out by Baur and Lucey (2010) -, it has earned its 

well-deserved reputation over various past economic disasters. Many financial advisors 

regularly recommend that investors should hold from 10% to 30% of their long-term 

portfolios in gold or gold-related positions. With the advent of bitcoin, a debate has started 

among practitioners covered in the financial press (see Mackintosh, 2017; Rob, 2018; 

Somerset Webb, 2018; Taplin, 2018, among others). The debate has centered principally 

on the issue of whether bitcoin has similar appealing properties to gold or not. Hitherto 

the search “bitcoin + gold” resulted in an overwhelming number of 335,000,000 results 

in Google (Google.com accessed on Nov 28, 2019). Not surprisingly, a number of 

professionals have indicated full or qualified support in favor of bitcoin. Such arguments, 

however, stand as anecdotal evidence, while relevant studies on this issue are relatively 

scarce. To contribute to the current debate on the role of the two assets, we study in a 

rigorous way whether bitcoin has an advantage over gold in terms of diversification 

benefits during extremely volatile periods. Given that such market conditions are a 

primary concern for investors, we base our contribution on the multivariate extreme value 

 

 

7 Bitcoin uses the blockchain technology, which ensures that any transaction is unique, and users 

can complete transactions without any intervention from regulatory authorities, central banks and 

governments. See Yermack (2017) for additional information regarding blockchains. 
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theory, which constitutes a formal statistical tool to model the dependence structure of 

extremes. Besides this, it can also capture nonlinearities that are more relevant to financial 

crashes. Going a step further, we also wonder if both bitcoin and gold can be useful 

together as complementary diversifiers. 

As our paper focuses on diversification benefits, we mainly study market risk 

through the distribution of returns (via the tail dependence). Note that beyond market risk, 

there are other relevant types of risk to consider before selecting an asset, mainly in crisis 

situations, such as liquidity risk (with higher transaction costs), regulatory and 

governance risk (changes of rules), political risk (ban of cryptocurrencies by some 

countries) and operational risk (failure of exchanges due to hacking). The size of the 

market is of importance, as well. Taking all these into consideration, the evidence 

provided here for the role of bitcoin in asset allocation and portfolio risk management 

should be assessed by investors on a regular basis. Bitcoin has a much shorter history than 

gold and some “new” types of idiosyncratic risk are still under investigation or need to 

be further studied. Future work should assess in practice their importance compared to 

gold, but we do not explore such types of risk here. 

5.2 Diversifiers for equity markets: Bitcoin or gold? 

Table 5 compares the results obtained in Steps 2 and 3 of our research strategy. 

Panel A reports the extreme correlation between the European equity market and bitcoin 

𝜌𝐸𝑈/𝐵𝑇𝐶, and between the European equity market and gold 𝜌𝐸𝑈/𝐺𝑜𝑙𝑑. Panel B reports the 

extreme correlation between the US equity market and bitcoin 𝜌𝑈𝑆/𝐵𝑇𝐶 and between the 

US equity market and gold 𝜌𝑈𝑆/𝐺𝑜𝑙𝑑. In each panel, we test the following null hypotheses: 

𝐻0: 𝜌𝐸𝑈/𝐵𝑇𝐶 = 𝜌𝐸𝑈/𝐺𝑜𝑙𝑑 and 𝐻0: 𝜌𝑈𝑆/𝐵𝑇𝐶 = 𝜌𝑈𝑆/𝐺𝑜𝑙𝑑, with a Wald test, to assess the 

potential advantages of bitcoin and gold in terms of diversification benefits during 

downside market conditions. 

As for the European equity market (Panel A) for negative return exceedances, we 

cannot reject the null hypothesis of equality, i.e., 𝐻0: 𝜌𝐸𝑈/𝐵𝑇𝐶 = 𝜌𝐸𝑈/𝐺𝑜𝑙𝑑, at optimal 

threshold levels, as the value of the Wald test is equal to 0.482. For positive return 

exceedances, we also cannot reject the null hypothesis, as the value of the Wald test is 

equal to 0.785. For the US equity market (Panel B) for negative return exceedances, we 

cannot reject the null hypothesis of equality, i.e., 𝐻0: 𝜌𝑈𝑆/𝐵𝑇𝐶 = 𝜌𝑈𝑆/𝐺𝑜𝑙𝑑, at optimal 

threshold levels, since the value of the Wald test is equal to 0.886. For positive return 
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exceedances, we also cannot reject the null hypothesis, as the value of the Wald test is 

equal to 0.872.  

Figure 5A depicts the extreme correlation between the European equity market 

and bitcoin and between the European equity market and gold. Figure 5B depicts the 

extreme correlation between the US equity market and bitcoin and between the US equity 

market and gold. The differences in the extreme correlation between the pairs under 

consideration are mostly statistically nonsignificant. Put differently, this implies that the 

probability of large losses occurring at the same time both in European or US equity 

markets and bitcoin is not significantly different (be it lower or higher) from the one 

observed when combining each equity market with gold. 

Overall, considering a separate addition of bitcoin or gold in an equity position, 

our findings show that an equity position including gold does not have a significant 

advantage over an equity position including bitcoin in times of extreme price volatility. 

Although advantages and disadvantages can be found for both speculative assets, our 

extreme value analysis contributes to the debate on which asset is superior and why; our 

approach is not based on philosophical premises of progressivists and conservationists, 

yet it is based on stringent data analysis with a suitable statistical tool for portfolio risk 

management. Regardless of some clear advantages that gold may have over bitcoin, we 

demonstrate empirically that the precious metal has a “real” competitor at least for the 

choice of diversifier against adverse price movements in equity markets. Consequently, 

from the perspective of diversification benefits, we conclude that bitcoin can be 

considered the new digital gold. 

5.3 Joint diversifiers for equity markets: Bitcoin and gold? 

The findings obtained in Step 4 of our research strategy reveal clear evidence that 

both bitcoin and gold can be useful together in times of turbulence in financial markets. 

We find a decreasing correlation between the bitcoin and gold return exceedances by 

going further into the left and right tails. We observe very low correlation levels, as 

follows: the correlation of negative return exceedances is equal to 0.054 at the optimal 

threshold levels, while the correlation of positive return exceedances is equal to 0.024. 

Both assets, i.e., bitcoin and gold, could then be added to a position in equity markets to 

provide additional diversification benefits. 

Although we previously mentioned that gold has a “real” competitor, in fact 

bitcoin and gold should not be considered as substitute assets in a portfolio. Actually, they 
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should be used jointly as complementary diversifiers against extreme price fluctuations. 

The general outlook suggests that the portfolio risk declines as a higher number of assets 

in it increases (Statman, 1987), while diversification benefits tend to become larger when 

these assets are less correlated (see Longin and Solnik, 1995; Errunza et al., 1999; 

Driessen and Laeven, 2007; Kalemli-Ozcan et al., 2013, among others). Against this 

backdrop, we introduce the new concept of diversification in diversifiers (hereafter D-in-

D) which refers to the use of several diversifiers with low levels of extreme correlation. 

D-in-D can also reduce the various types of risk exposures discussed in subsection 5.1. 

As a consequence, in terms of proper portfolio construction, regarding the question 

“bitcoin or gold”, our empirical analysis provides promising evidence that including both 

bitcoin and gold is the best answer to diversify a position in equity markets when extreme 

price movements happen. Such evidence increases the future utility of bitcoin for the 

financial community. Below, we further evaluate this concept by performing several 

robustness checks. 

6. Robustness 

In this section, having obtained strong results in favor of bitcoin as a diversifier, 

we perform several robustness checks to validate the answer to the following question: 

“Is bitcoin the new digital gold?”. First, we extend our modeling approach to the extreme 

value models of the logistic family to check whether the behavior of tail dependence holds 

in a more generalized framework. Second, we expand our empirical study to other 

countries of international financial interest. Third, we also expand our empirical study to 

other cryptocurrencies with increasing popularity. Fourth, we study whether our results 

about extreme correlation are stable over time. 

6.1 Extended bivariate modeling of extremes 

We previously used the logistic model to estimate the tail dependence in the 

distribution of asset returns and to assess the diversification benefits during extremely 

volatile periods. We now extend our baseline statistical model by fitting different models 

from the logistic family. The models under consideration are as follows: (i) the 

asymmetric logistic model (an extension of the logistic model allowing for asymmetry 
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and nonexchangeability),8 (ii) the negative logistic model (a variant of the logistic model 

as a survival model) and (iii) the asymmetric negative logistic model (an extension of the 

negative logistic model allowing for asymmetry). Then, we provide a comparative 

discussion of the results obtained with these different models. 

Bivariate extreme value models 

The asymmetric logistic model proposed by Tawn (1988) for Fréchet margins is 

given by the following: 

𝐺𝑋(𝑦1, 𝑦2) = 𝑒𝑥𝑝 (−
1 − 𝜃1

𝑦1
−

1 − 𝜃2

𝑦2
− ((

𝑦1

𝜃1
)

−1 𝛼⁄

+ (
𝑦2

𝜃2
)

−1 𝛼⁄

)

𝛼

) (9) 

where 0 < 𝛼 ≤ 1, 0 ≤ 𝜃1 ≤ 1 and 0 ≤ 𝜃2 ≤ 1. Asymptotic independence is obtained 

when 𝛼 = 1 with 𝜃1 = 0 or 𝜃2 = 0. Total dependence is obtained when 𝜃1 = 𝜃2 = 0 and 

𝛼 → 0. Our baseline model given by Equation (8) corresponds to the following special 

case: 𝜃1 = 𝜃2 = 1. 

The negative logistic model proposed by Galambos (1975) for Fréchet margins is 

given by the following: 

𝐺𝑋(𝑦1, 𝑦2) = 𝑒𝑥𝑝(−𝑦1 − 𝑦2 + (𝑦1
−𝛼 + 𝑦2

−𝛼)−1 𝛼⁄ ) (10) 

with dependence parameter 𝛼 > 0. Asymptotic independence is obtained when 𝛼 → 0, 

while total dependence is obtained when 𝛼 → +∞. 

The asymmetric negative logistic model proposed by Joe (1990) for Fréchet 

margins is given by the following: 

𝐺𝑋(𝑦1, 𝑦2) = 𝑒𝑥𝑝(−𝑦1 − 𝑦2 + ((𝜃1𝑦1)−𝛼 + (𝜃2𝑦2)−𝛼)−1 𝛼⁄ ) (11) 

with dependence parameter 𝛼 > 0 and asymmetric parameters 𝜃1 and 𝜃2, where 0 ≤ 𝜃1, 

𝜃2 ≤ 1. When 𝜃1 = 𝜃2 = 1, the asymmetric negative logistic model is equivalent to the 

negative logistic model. The independence is obtained, as one of the parameters 𝛼, 𝜃1 or 

𝜃2 tends to 0, while total dependence is obtained when 𝜃1 = 𝜃2 = 1 and 𝛼 → +∞. 

 

 

8 With the term nonexchangeability, we refer to the case of more asymmetric copulas as we model 

more dependent relations between random variables (see Nelson, 2007; Durante, 2009, among others). 
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The bivariate extreme value models presented above have the general 

representation form, as described in Equation (5). This equation can also be written as 

follows: 

𝐺𝑋(𝑦1, 𝑦2) = 𝑒𝑥𝑝 (− (
1

𝑦1
+

1

𝑦2
) 𝐴 (

𝑦2

𝑦1 + 𝑦2
)) (12) 

where the 𝐴(∙) is known as the Pickands depedence function, whereas 𝐴: [0,1] → [1/2,1] 

is a convex function, satisfying max{𝑡, 1 − 𝑡} ≤ 𝐴(𝑡) ≤ 1 and 𝐴(0) = 𝐴(1) =1. One of 

the key points resulting from the study of Pickands (1981), based on de Haan and 

Resnick's (1977) findings, is that it allows us to uniquely characterize a bivariate extreme 

value model by means of a finite measure defined on the unit simplex. More precisely, 

the function 𝐴(∙) and any bivariate extreme value model are linked by the following 

relation: 𝐴(𝜔) = 𝐷𝑋(𝑦1, 𝑦2)/(𝑦1
−1 + 𝑦2

−1), where 𝜔 = 𝑦2/(𝑦1 + 𝑦2). For a bivariate 

parametric dependence function 𝐴(∙) defined by threshold 𝑢 corresponding to the 𝑞-

quantile, the strength of quantile dependence is measured by the parameter 𝜒(𝑞). The 

quantile dependence parameter 𝜒(𝑞) is approximately equal to 2(1 − 𝐴(1/2)), where 

0 ≤ 𝜒(𝑞) ≤ 1 and 𝑞 ∈ (0,1). The special cases where 𝜒(𝑞) is equal to 1 (for all 𝑞) and 

𝜒(𝑞) is equal to 0 (for all 𝑞) correspond to asymptotic independence and total dependence, 

respectively (Coles et al., 1999). 

The quantile dependence parameter 𝜒(𝑞) is closely related to the dependence 

parameter 𝛼, previously used as a measure of the strength of tail dependence. However, 

the relation between the dependence parameter 𝛼 and the quantile dependence parameter 

𝜒(𝑞) varies according to the extreme value model. For example, for the logistic model, 

asymptotic independence is obtained when 𝛼 → 1, while for the negative logistic model, 

asymptotic independence is obtained when 𝛼 → 0. Hence, in this subsection, we consider 

the quantile dependence parameter 𝜒(𝑞) to compare the dependence measure across all 

models of the logistic family used in this study. 

Comparative results across bivariate extreme value models 

Table 6 refers to the quantile dependence parameter estimates for the four models 

presented above. For each model, we provide the maximum likelihood estimate for the 

quantile dependence parameter 𝜒(𝑞) and the Akaike information criterion (𝐴𝐼𝐶) at 

optimal thresholds. The quantile 𝑞 at optimal thresholds is defined as the corresponding 

tail probability 𝑝 for the negative return exceedances and (1 − 𝑝) for the positive return 

exceedances. The minimum value of the 𝐴𝐼𝐶 across the four models is highlighted in 
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bold. Panel A refers to negative return exceedances in the left tail of the distribution, and 

Panel B refers to positive return exceedances in the right tail. 

We present the empirical results following our four-step research strategy. More 

specifically, regarding Step 1, which refers to the quantile dependence between European 

and the US equity markets (EU/US), we find that the level of dependency is relatively 

high in bear markets and significantly lower in bull markets across all bivariate extreme 

value models. Regarding Panel A and the negative return exceedances, the quantile 

dependence parameter 𝜒(𝑞) is equal to 0.764 for the logistic model, 0.533 for the 

asymmetric logistic model, 0.769 for the negative logistic model and 0.476 for the 

asymmetric negative logistic model. Regarding Panel B and the positive return 

exceedances, the quantile dependence parameter 𝜒(𝑞) is equal to 0.274 for the logistic 

model, 0.304 for the asymmetric logistic model, 0.338 for the negative logistic model and 

0.345 for the asymmetric negative logistic model. Furthermore, the 𝐴𝐼𝐶 is at the 

minimum for the negative logistic model. Regarding Step 2, which refers to the quantile 

dependence between equity markets and bitcoin (EU/BTC and US/BTC), we find a weak 

level of dependency between equity markets and bitcoin across all bivariate extreme value 

models, both in bear and bull markets. Regarding Step 3, which refers to the quantile 

dependence between equity markets and gold (EU/Gold and US/Gold), a similar result is 

obtained as in the previous step. Finally, regarding Step 4, which refers to the quantile 

dependence between bitcoin and gold (BTC/Gold), we also find a weak level of 

dependency both in bear and bull markets. 

Further supporting our earlier findings reached by the logistic model, by 

considering several extensions within the logistic family, we conclude that our findings 

are robust to the choice of the model used to study the tail dependence structure. 

6.2 Expansion to other international equity markets 

We now examine whether our empirical results hold for other international equity 

markets of financial interest, as follows: two Asian equity markets (China and Japan) and 

three European equity markets (France, Germany and the United Kingdom). Regarding 

the Asian equity markets, we consider the SSE 180 index for China and the Nikkei 225 

index for Japan. Regarding the European equity markets, we consider the CAC 40 index 

for France, the DAX 30 index for Germany and the FTSE 100 index for the United 

Kingdom (UK). All these indices, which include heavily traded and liquid stocks, are 
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important benchmarks for the asset management industry. The data for the SSE 180, 

Nikkei 225, CAC 40, DAX 30 and FTSE 100 indices come from Bloomberg. 

Similar to Step 2 and 3 of our research strategy, we analyze the tail dependence 

structure of these international equity markets vis-à-vis bitcoin and gold in a pairwise 

comparison. We repeat our analysis for the same time period (from April 19, 2013 to 

April 17, 2018) by applying in each new time series the data adjustment procedure 

described in Appendix 2. 

We present the extreme correlations between each equity market and bitcoin and 

between each equity market and gold in Figure 6. More specifically, Figures 6A and 6B 

refer to the Asian equity markets, that is, the Chinese equity market and the Japanese 

equity market, respectively. Figures 6C, 6D and 6E refer to the European equity markets, 

that is, the French equity market, the German equity market and the UK equity market, 

respectively. 

As shown in Figure 6, the correlation of return exceedances between equity 

markets and bitcoin declines moving towards the distribution tails for all equity markets. 

We observe similar bivariate dependence patterns between equity indices and gold. More 

specifically, considering a separate addition of bitcoin in an equity position, our findings 

show that an equity position including gold does not have any significant advantage 

against an equity position including bitcoin in periods of extreme volatility, in five 

additional international equity markets. 

In conclusion, considering other major international equity markets, we also show 

that bitcoin can be regarded as a strong candidate for offering diversification benefits in 

a world-wide context. 

6.3 Expansion to other cryptocurrencies 

We now examine whether our empirical results hold for other cryptocurrencies. 

We consider the market-weighted cryptocurrency index, the so-called CRIX, which was 

developed by Trimborn and Härdle (2018), as a benchmark for the cryptocurrency 

market. We find a correlation between bitcoin and CRIX equal to 0.772, a high value as 

expected, since bitcoin has the largest weight in the CRIX index by far. Unsurprisingly, 

by applying our four-step research strategy with CRIX instead of bitcoin, we find similar 

results. To remove the effect of bitcoin, we then build on the CRIX index to construct 

another market-weighted cryptocurrency index that excludes bitcoin. We name this 

modified CRIX index as m-CRIX. 
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Figure 7 depicts the results obtained from our research strategy using the m-CRIX 

index. We repeat our analysis for the same time-period (from April 19, 2013 to April 17, 

2018) by applying the data adjustment procedure described in Appendix 2 to the m-CRIX 

index. We present the new estimates of correlation of return exceedances in Figure 7. 

More specifically, Figure 7A refers to bitcoin and the m-CRIX index; Figure 7B refers to 

the European equity market and m-CRIX index; Figure 7C refers to the US equity market 

and m-CRIX, and Figure 7D refers to the m-CRIX and gold. 

As shown in Figure 7, the following results are obtained: first, we observe that the 

correlation of the return exceedances between bitcoin and m-CRIX increases in bear 

markets and decreases in bull markets. Thus, there is little incentive to use bitcoin and 

other cryptocurrencies together in times of turbulence of financial markets. Second, the 

correlation of the return exceedances between equity indices and m-CRIX declines 

moving towards the distribution tails. We observe similar bivariate dependence patterns 

between the equity markets and m-CRIX and between the equity markets and bitcoin, as 

in Step 2 of our research strategy. Therefore, considering a separate addition of m-CRIX 

in an equity position, our findings show that other cryptocurrencies could also provide 

significant diversification benefits to investors during periods of extreme price volatility. 

Finally, we also observe that the correlation of the return exceedances between m-CRIX 

and gold decreases in both bear and bull markets, as in Step 4 of our research strategy. 

This clearly indicates that both m-CRIX and gold can be used together when financial 

markets are facing times of turbulence. 

In short, by considering other cryptocurrencies as diversifiers, we also conclude 

that they can also provide potential diversification benefits for an equity position. This is 

a promising result for the role that not only bitcoin but also cryptocurrencies can play in 

general in the new digital era. 

6.4 Stability over time of extreme correlation 

We now examine whether our empirical results are stable over time. Once again, 

we present the empirical results based on our four-step research strategy. Figure 8 depicts 

the extreme correlation estimates over time using a 1-step ahead rolling-estimation 

window for the negative return exceedances, while Figure 9 presents the estimates for the 

positive return exceedances. Figure 8A (9A) refers to equity markets (Step 1), i.e., the 

European and US equity markets (EU/US). Figures 8B (9B) and 8C (9C) refer to equity 

markets and bitcoin (Step 2), i.e., the European equity market and bitcoin (EU/BTC) and 
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the US equity market and bitcoin (US/BTC), respectively. Figures 8D (9D) and 8E (9E) 

refer to equity markets and gold (Step 3), i.e., the European equity market and gold 

(EU/Gold) and the US equity market and gold (US/Gold), respectively. Figure 8F (9F) 

refers to bitcoin and gold (Step 4), i.e., bitcoin and gold (BTC/Gold). 

More specifically, as for Step 1 and Figures 8A and 9A, we find that the extreme 

correlation is always higher in bear markets and lower in bull markets for the period 

considered. As for Step 2 and Figures 8B and 9B, we find a weak level of dependency 

between the European equity market and bitcoin (EU/BTC) both in bear and bull markets; 

thus, the extreme correlation is reasonably stable over time. The same remarks apply for 

the US equity market and bitcoin (US/BTC). Similar patterns to those in Step 2 are also 

found in Step 3, when considering equity markets and gold, namely, either the European 

equity market and gold (EU/Gold) or the US equity market and gold (US/Gold). Finally, 

as for Step 4, we find a weak level of dependency between bitcoin and gold (BTC/Gold) 

over time both in bear and bull markets. 

Without going further into this discussion, it seems reasonable to state that our 

results do remain robust over time providing early evidence of a long-lived phenomenon.  

We have documented a considerable body of robustness checks (model specification, 

validity for other equity markets and cryptocurrencies, stability over time) in support of 

bitcoin as a diversifier. Thus, a well-diversified equity portfolio with both bitcoin and 

gold can be the best diversification strategy in periods of stress. This evidence naturally 

leads to the following practical question: “How to form such portfolios using the 

information arising from the multivariate extreme value analysis?” We discuss these 

implications below. 

7. Implications for asset management 

In this section, we assess the practical implications of the extreme dependence 

structure for asset management. First, we develop a risk-return-oriented asset allocation 

strategy to build optimal portfolios based on tail risk constraints. Second, we present our 

empirical results for asset allocation and discuss the portfolio performance gains. 

7.1 Optimal portfolios based on tail risk constraints 

We take the point of view of investors with an equity position seeking 

diversification alternatives to protect their portfolio during extremely volatile periods. We 

study the effects of including either bitcoin or gold (and also both at the same time) in the 
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equity position in terms of diversification gains resulting from the low extreme correlation 

between equity markets, on the one hand, and bitcoin or gold on the other. With our risk-

return-oriented asset allocation strategy, we show that including bitcoin in an equity 

position provides significant gains in terms of portfolio performance. This procedure 

takes into account the very high level of volatility of bitcoin (although this feature is 

sometimes perceived as an important limitation for the use of bitcoin, as pointed out by 

Yermack, 2015 and Härdle et al., 2019), along with its very high price performance and 

its low level of correlation with traditional assets. 

Since investors care about the extreme risk effects on their portfolios, we consider 

tail risk measures focusing on the extreme losses lying in the left tail of the distribution 

as a proxy of portfolio risk. This point of view is consistent with the safety-first criterion 

introduced by Roy (1952). This criterion is closely associated with the mean-variance 

rule (Levy and Sarnat, 1972), yet it explicitly takes into consideration the likelihood of 

large losses. Interestingly, de Haan et al. (1994) successfully improved the safety-first 

criterion by exploiting the heavy-tailed behavior of asset returns with the help of extreme 

value theory. Turning now to the role of extreme events in portfolio risk management, 

Longin and Solnik (2001), and Forbes and Rigobon (2002) studied the importance of the 

independence of extremes in portfolio design. They found that traditional dependence 

measures (e.g., the Pearson correlation) could easily lead to inaccurate portfolio risk 

assessment. Furthermore, Poon et al. (2004) showed that the failure to identify asymptotic 

independence - characterized in practice by very low values of extreme correlation (see 

subsection 3.2) - leads to overestimating the portfolio risk due to an underestimation of 

tail diversification gains. Considering extremes in the portfolio design is far from being a 

trivial exercise, as a result of the high complexity observed in their dependence structure. 

This high complexity mainly comes from the following aspects: (i) the presence of heavy 

tails in the distribution of asset returns (univariate aspect) and (ii) the tail dependence 

structure with different behaviors ranging from asymptotic independence to total 

dependence (multivariate aspect). To this end, we employ two risk measures widely used 

in asset and portfolio risk management, namely, the Value at Risk (𝑉𝑎𝑅) and the Expected 

Shortfall (𝐸𝑆). The 𝑉𝑎𝑅 corresponds to a loss of the position occurring with a given 

probability over a given time period, while the 𝐸𝑆 is the average conditional loss 
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exceeding the 𝑉𝑎𝑅.9 While traditional risk measures, such as the standard deviation of 

returns, work well for ordinary market conditions, tail risk measures are better fitted for 

extraordinary conditions (see Longin, 2000; Bali, 2000, among others). 

More specifically, our risk-return-oriented allocation approach can be 

implemented in the following steps: (i) We first compute the tail risk measures (𝑉𝑎𝑅 

or 𝐸𝑆) for a given probability level for an equity position (in the European or US equity 

market). (ii) We then incorporate an alternative asset (bitcoin or gold) and compute its 

optimal weight such that the tail risk value of the new position is equal to the one of the 

initial equity position.10 That is, we keep the same level of risk intrinsic to the initial 

position that has already been accepted by investors. (iii) Finally, under the same level of 

risk, the expected return of the portfolio is maximized. The details of our procedure to 

construct equal-𝑉𝑎𝑅 and equal-𝐸𝑆 portfolios are given in Appendix 5. Compared to the 

standard portfolio optimization approach, which can lead to concentrated portfolios due 

to estimation errors (Merton, 1980; Jorion, 1985; Simaan, 1997; Kan and Zhou, 2007), 

an approach based on the safety-first criterion using tail risk constraints tends to produce 

more balanced portfolios in terms of risk exposure (Roy, 1952; Arzac and Bawa, 1977; 

de Haan et al. 1994). 

To assess the benefits for investors, we consider the following three performance 

measures: the gain in expected return 𝐸(𝑟), the tail performance (𝑇𝑃) and the 

diversification performance (𝐷𝑃). The expected return 𝐸(𝑟) is the usual benchmark to 

measure the portfolio performance. Following Bollerslev et al. (2019) with respect to the 

concept of upside volatility (good volatility), the tail performance (𝑇𝑃) is measured by 

the ratio between the upside quantile of the distribution of the new position (right tail and 

positive return exceedances) and the upside quantile of the initial position. As our 

approach to design portfolios keeps the tail risk in the left tail constant by construction, 

 

 

9 From a practical point of view, despite being widely used in asset and risk management, the 𝑉𝑎𝑅 

does not properly measure diversification gains - a keystone feature in portfolio risk management - due to 

a lack of convexity, as shown by Artzner et al. (1999). On the other hand, the 𝐸𝑆 presents better theoretical 

properties than the 𝑉𝑎𝑅 and never increases for more diversified portfolios. In other words, it is a coherent 

measure of risk reflecting the portfolio diversification benefits. 
10 Note that if the returns are normally distributed (the statistical assumption used in standard 

portfolio optimization models), our approach based on tail risk measures is equivalent to the approach based 

on the typical risk measure of standard deviation. When asset returns are normally distributed, the 𝑉𝑎𝑅 for 

a given probability 𝑝 is directly linked to the asset volatility 𝜎 by 𝑉𝑎𝑅(𝑝, 𝜎) = (𝑝)𝜎. For example, when 

𝑝 is equal to 95%, the coefficient of proportionality  is equal to 1.64. 
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the performance gains then appear in the right tail and are captured by the 𝑇𝑃 ratio. In 

other words, consistent with the well-studied concept of incorporating higher order 

moments in portfolio selection (see Scott and Horvath, 1980; Conine and Tamarkin, 1981; 

Kane, 1982; Harvey et al., 2010, among others), this ratio quantifies the asymmetric effect 

in the distribution of returns. Following Poon et al. (2004), the diversification 

performance (𝐷𝑃) is measured by the ratio between the tail risk value (𝑉𝑎𝑅 or 𝐸𝑆) of the 

new position with the empirical extreme correlation and the theoretical tail risk value, 

assuming the total dependence of negative extremes.11 The 𝐷𝑃 ratio captures the 

diversification effect resulting from low levels of extreme correlation for negative return 

exceedances. 

7.2 Empirical results for asset allocation 

We now present our main empirical results for asset allocation. We consider the 

following different cases: two-asset portfolios (i.e., equity markets including either 

bitcoin or gold) and three-asset portfolios (i.e., equity markets including both bitcoin and 

gold). 

Two-asset portfolios 

Table 7 reports the optimal asset allocation based on tail risk measures. We follow 

our four-step procedure to present the results for the two-asset portfolios. We start with 

international equity markets and then include either bitcoin or gold in initial positions. 

We also assess the joint potential of bitcoin and gold as diversifiers. Panel A reports the 

optimal asset allocation for equal-𝑉𝑎𝑅 portfolios, and Panel B reports the optimal asset 

allocation for equal-𝐸𝑆 portfolios. We consider different risk levels corresponding to the 

probability levels equal to 95%, 99% and 99.9% for 𝑉𝑎𝑅 and 𝐸𝑆. 

Step 1 refers to the optimal asset allocation between the European and US equity 

markets (EU/US). In Panel A, for a 95%-𝑉𝑎𝑅 of 3.25% (obtained for an initial position 

in the US equity market), the optimal weights of the portfolios invested in the European 

and US equity markets are (30, 70). For this position, the expected return 𝐸(𝑟) is equal 

to 0.17% (weekly unit), the 𝑇𝑃 ratio is equal to 0.012 and the 𝐷𝑃 ratio is equal to 0.031. 

As we increase the risk level of the portfolio (99%-𝑉𝑎𝑅 of 5.74% and 99.9%-𝑉𝑎𝑅 of 

 

 

11 As for the case of total dependence, we simulate from a bivariate logistic distribution with 

parameters equal to the estimated parameters of returns presented in Tables 1-4. 
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9.20%), the weights of the optimal portfolio invested in the EU and US equity markets 

now become (58, 42) and (28, 72). In Panel B, for a 95%-𝐸𝑆 of 4.73% (obtained for an 

initial position in the US equity market), the weights of the optimal portfolio invested in 

the EU and US equity markets are (42, 58). For this position, the expected return 𝐸(𝑟) is 

equal to 0.16%, the 𝑇𝑃 ratio is equal to 0.012 and the 𝐷𝑃 ratio is equal to 0.038. As we 

increase the risk level of the portfolio (99%-𝐸𝑆 of 7.13% and 99.9%-𝐸𝑆 of 10.68%), the 

weights of the optimal portfolio invested in the EU and US equity markets become (48, 

52) and (28, 72). Note that in Step 1, the gains after combining the two equity markets 

are rather limited due to the high extreme correlation. 

Step 2 refers to the optimal asset allocation between equity markets and bitcoin, 

i.e., the European equity market and bitcoin (EU/BTC) and the US equity market and 

bitcoin (US/BTC). Regarding the EU/BTC, for a 95%-𝑉𝑎𝑅 of 3.52%, the weights of the 

optimal portfolio invested in the European equity market and bitcoin are (92, 8). The 

expected return on the new portfolio 𝐸(𝑟) is equal to 0.21% (a significant increase 

compared to Step 1 despite the small weight of bitcoin in the new position), the 𝑇𝑃 ratio 

is equal to 0.117 and the 𝐷𝑃 ratio is equal to 0.389 (much higher values than those in Step 

1). As we increase the risk level of the portfolio (99%-𝑉𝑎𝑅 of 5.95% and 99.9%-𝑉𝑎𝑅 of 

8.80%), the weights of the optimal portfolio invested in the European equity market and 

bitcoin become (89, 11) and (85, 15). The increase in the bitcoin weights is consistent 

with the decrease in extreme correlation documented in Section 4. The gains in terms of 

portfolio performance also increase. Even though bitcoin exhibits an extreme volatile 

price behavior (sometimes using bitcoin is perceived as an important limitation, as we 

already mentioned), our risk-return-oriented allocation approach shows that bitcoin can 

be optimally introduced in an equity position under the tail risk constraint. The same 

remarks apply for the US equity market and bitcoin (US/BTC). 

Step 3 refers to the optimal asset allocation between equity markets and gold, i.e., 

the European equity market and gold (EU/Gold) and the US equity market and gold 

(US/Gold). Regarding the EU/Gold, for 95%-𝑉𝑎𝑅 of 3.48%, the weights of the optimal 

portfolio invested in the EU and gold are (95, 5). The expected return on the new portfolio 

𝐸(𝑟) is equal to 0.10% (a lower increase compared to Step 1 due to the low weight of 

gold and its low expected return observed over the period), the 𝑇𝑃 ratio is equal to 0.051 

and the 𝐷𝑃 ratio is equal to 0.060 (higher values than those in Step 1). As we increase the 

risk level of the portfolio (99%-𝑉𝑎𝑅 of 5.81% and 99.9%-𝑉𝑎𝑅 of 9.32%), the weights of 
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the optimal portfolio invested in the EU and gold become (97, 3) and (95, 5). Although 

the gains are somehow limited, higher weights for gold can reduce the tail risk exposure 

of an investor, as documented in subsection 4.3. Compared to Step 2, the inclusion of 

gold has a lower impact on the portfolio performance than the inclusion of bitcoin. The 

same remarks apply for the US equity market and gold (US/Gold), with the only 

differences being observed in 𝑉𝑎𝑅 and 𝐸𝑆, which are always lower than the European 

equity market and gold (EU/Gold). 

Step 4 refers to the optimal asset allocation between bitcoin and gold (BTC/Gold). 

For a 95%-𝑉𝑎𝑅 of 3.20% (obtained for an initial position in gold), the weights of the 

optimal portfolio invested in bitcoin and gold are (4, 96). The expected return on the new 

portfolio 𝐸(𝑟) is equal to 0.03%, the 𝑇𝑃 ratio is equal to 0.203 and the 𝐷𝑃 ratio is equal 

to 0.219. As we increase the risk level of the portfolio (99%-𝑉𝑎𝑅 of 5.08% and 99.9%-

𝑉𝑎𝑅 of 7.80%), the weights of the optimal portfolio invested in bitcoin and gold become 

(10, 90) and (16, 84). We observe that as the level of risk increased, the position in bitcoin 

is also increased. This is explained by the low extreme correlation between bitcoin and 

gold as we go further in distribution tails. This implies that bitcoin and gold cannot only 

be used together as diversifiers when extreme price movements occur in equity markets, 

but also a position in both of them achieves additional performance gains under our risk-

return-oriented allocation strategy (as confirmed for the three-asset portfolios studied in 

the following subsection). 

Summarizing the case of the two-asset portfolios, the introduction of bitcoin in an 

equity position achieves high performance for equal levels of tail risk measured by either 

the 𝑉𝑎𝑅 or the 𝐸𝑆. In spite of the fact that a position in bitcoin per se can be extremely 

risky, its certain features (e.g. high price performance along with low levels of extreme 

correlation with traditional assets) can be considered useful for practitioners under an 

appropriate asset allocation strategy. Including bitcoin in an equity position cannot only 

provide a risk-reduction benefit but also increase substantially the portfolio performance 

by keeping the portfolio risk constant. The introduction of gold also achieves some 

performance, albeit lower than that of bitcoin. 

Three-asset portfolios 

We now turn our attention to the assessment of the bitcoin-and-gold potential as 

joint diversifiers for equity positions. We study the portfolio performance of an equity 

position including both bitcoin and gold: the European equity market, bitcoin and gold 
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(EU/BTC/Gold) and the US equity market, bitcoin and gold (US/BTC/Gold). Our 

findings fully support the use of both assets in a portfolio due to their low levels of 

extreme correlation (Step 4). 

Table 8 reports the optimal asset allocation based on tail risk measures for the 

three-asset portfolios. We start with international equity markets as initial positions and 

then include both bitcoin and gold to assess their joint potential as diversifiers. Panel A 

reports the optimal asset allocation for equal-𝑉𝑎𝑅 portfolios, and Panel B reports the 

optimal asset allocation for equal-𝐸𝑆 portfolios. For comparison purposes, we consider 

again different risk levels, i.e., 95%, 99% and 99.9% for both 𝑉𝑎𝑅 and 𝐸𝑆. More 

specifically, in Panel A, under our risk-return-oriented asset allocation strategy, for a 

95%-𝑉𝑎𝑅 of 3.52% (obtained for an initial position in the EU equity market), the optimal 

weights of the portfolios invested in the EU equity market, bitcoin and gold are (64, 15, 

21). The optimal weight of bitcoin in the European equity position is now almost doubled 

compared to the case of two-asset portfolios and Step 2. The optimal contribution of gold 

is also increased. For this position, the expected return 𝐸(𝑟) is equal to 0.29%, while the 

𝑇𝑃 and 𝐷𝑃 ratios are equal to 0.247 and 0.384, respectively. As we increase the risk level 

of the portfolio (99%-𝑉𝑎𝑅 of 5.92% and 99.9%-𝑉𝑎𝑅 of 8.86%), the weights of the 

optimal portfolio now become (55, 17, 28) and (59, 19, 22). In Panel B, for a 95%-𝐸𝑆 of 

4.77% (obtained for an initial position in the EU equity market too), the weights are now 

(62, 15, 23). For this position, the gains are: 0.29% for expected return 𝐸(𝑟), 0.253 for 

the 𝑇𝑃 ratio and for the 𝐷𝑃 ratio they are equal to 0.395. As we increase the risk level of 

the portfolio (99%-𝐸𝑆 of 7.13% and 99.9%-𝐸𝑆 of 10.68%), the optimal weights become 

(61, 20, 19) and (53, 25, 22). Similar remarks apply to the US equity market, bitcoin and 

gold (US/BTC/Gold), although the increase in performance is higher than for the 

European equity market. In consistence with the concept of diversification in diversifiers 

(D-in-D), the use of two diversifiers with low levels of extreme correlation leads to an 

increase in their weights and an increase in portfolio performance.  

To clarify the previous point, let us consider the following simple interpretation 

where two opposite effects take place - the diversification effect and the volatility effect 

- both affecting portfolio risk and portfolio performance. The diversification effect tends 

to reduce the portfolio risk, as assets with low levels of extreme correlation are now added 

in the portfolio. Hyung and De Vries (2005) noted a similar effect when more assets were 

to be included. The volatility effect tends to increase portfolio performance, as assets with 
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higher levels of volatility are now included in the portfolio. Under our risk-return-oriented 

allocation strategy, in order to keep the portfolio risk constant, a detour via increasing the 

weights of riskier assets (e.g. bitcoin) is necessary. If this is not the case, lower risk levels 

will arise due to the diversification effect. However, increasing the weights of riskier 

assets presenting higher levels of volatility (both downside and upside) will result in a 

positive effect on portfolio performance (volatility effect). In the case of asymmetry in 

return distribution, the volatility effect is higher. 

Summarizing the case of the three-asset portfolios, we confirm the most salient 

result in terms of portfolio risk management obtained in Section 5 about the low extreme 

correlation between bitcoin and gold. The portfolio analysis shows that the concept of D-

in-D is in practice beneficial, indeed. In particular, the inclusion of both diversifiers 

significantly improves the performance with regard to portfolio gains under tail risk 

constraints (compared to the case of two-asset portfolios). Thus, using both bitcoin and 

gold is the best answer to diversify an equity position in times of extreme price 

fluctuations. This is our recommendation for asset managers. 

8. Conclusion 

Is bitcoin the new digital gold? This question has lately begun to concern 

practitioners and the financial press. In order to provide a rigorous answer to this question, 

we investigate the potential benefits of bitcoin during extremely volatile periods in 

financial markets. This is a challenging exercise, and one should exert great care to avoid 

misleading results, mainly due to the high complexity observed in the dependence 

structure of extreme returns. In this study, to avoid wrong conclusions, we use the extreme 

value theory, which is the proper statistical approach to study this issue. In a multivariate 

framework, by focusing on the correlation of return exceedances, we analyze the tail 

dependence structure of international equity markets, i.e., Europe and the United States 

vis-à-vis bitcoin and gold, in a pairwise comparison. 

We develop a research strategy in four steps. In Step 1, we consider a position in 

equity markets and find - similarly to previous studies - that the correlation of extreme 

returns increases during stock market crashes and decreases during stock market booms. 

In Step 2, we combine each equity position with bitcoin and find that the correlation of 

extreme returns decreases sharply during both market booms and crashes. This indicates 

that bitcoin can play an important role in asset management by providing diversification 

benefits in periods of extreme price volatility. In Step 3, we combine each equity position 
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with gold and obtain a similar result. This confirms its well-recognized status as a safe 

haven in asset management when a crisis occurs. In Step 4, we combine bitcoin and gold 

and find a low correlation of return exceedances. This indicates that both assets can be 

useful together in times of turbulence in financial markets. Further analysis also suggests 

that bitcoin can be useful in asset management in practice, as the introduction of bitcoin 

along with gold substantially improves the risk-return characteristics of equity positions 

with tail risk constraints. Such evidence shows that bitcoin can be considered the new 

digital gold, yet gold itself can still play an important role in portfolio risk management. 

Overall, from a portfolio risk management point of view, concerning the question 

“bitcoin or gold”, having both bitcoin and gold as complementary diversifiers is the best 

answer to diversify a position in equity markets when extreme price movements take 

place. To conclude, the diversification in diversifiers (D-in-D) is the optimal strategy in 

terms of bringing about additional value for investors.  



41 

References 

Aloui, R., Aïssa, M.S. Ben, Nguyen, D.K., 2011. Global Financial Crisis, Extreme 

Interdependences, and Contagion Effects: The Role of Economic Structure? J. Bank. 

Financ. 35, 130–141. doi:10.1016/j.jbankfin.2010.07.021 

Ang, A., Bekaert, G., 2002. International Asset Allocation with Regime Shifts. Rev. 

Financ. Stud. 15, 1137–1187. doi:10.1093/rfs/15.4.1137 

Ang, A., Chen, J., 2002. Asymmetric Correlations of Equity Portfolios. J. financ. econ. 

63, 443–494. doi:10.1016/S0304-405X(02)00068-5 

Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., 1999. Coherent Measures of Risk. Math. 

Financ. 9, 203–228. doi:10.1111/1467-9965.00068 

Arzac, E.R., Bawa, V.S., 1977. Portfolio Choice and Equilibrium in Capital Markets with 

Safety-First Investors. J. financ. econ. 4, 277–288. doi:10.1016/0304-

405X(77)90003-4 

Bali, T.G., 2000. Testing the Empirical Performance of Stochastic Volatility Models of 

the Short-Term Interest Rate. J. Financ. Quant. Anal. 35, 191–215. 

doi:10.2307/2676190 

Balkema, A.A., de Haan, L., 1974. Residual Life Time at Great Age. Ann. Probab. 2, 

792–804. doi:10.2307/2959306 

Baur, D.G., Lucey, B.M., 2010. Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, 

Bonds and Gold. Financ. Rev. 45, 217–229. doi:10.1111/j.1540-6288.2010.00244.x 

Baur, D.G., McDermott, T.K., 2010. Is Gold a Safe Haven? International Evidence. J. 

Bank. Financ. 34, 1886–1898. doi:10.1016/j.jbankfin.2009.12.008 

Behnen, K., Neuhaus, G., Hušková, M., 1985. Rank Estimators of Scores for Testing 

Independence. Stat. Risk Model. 3, 239–262. doi:10.1524/strm.1985.3.34.239 

Bekaert, G., Ehrmann, M., Fratzscher, M., Mehl, A., 2014. The Global Crisis and Equity 

Market Contagion. J. Finance 69, 2597–2649. doi:10.1111/jofi.12203 

Black, F., Litterman, R., 1992. Global Portfolio Optimization. Financ. Anal. J. 48, 28–

43. doi:10.2469/faj.v48.n5.28 

Böhme, R., Christin, N., Edelman, B., Moore, T., 2015. Bitcoin: Economics, Technology, 

and Governance. J. Econ. Perspect. 29, 213–238. doi:10.1257/jep.29.2.213 

Bollerslev, T., Li, S.Z., Zhao, B., 2019. Good Volatility, Bad Volatility, and the Cross 

Section of Stock Returns. J. Financ. Quant. Anal. doi:10.1017/S0022109019000097 

Bortot, P., Coles, S., Tawn, J., 2000. The Multivariate Gaussian Tail Model: An 

Application to Oceanographic Data. J. R. Stat. Soc. Ser. C (Applied Stat. 49, 31–49. 

doi:10.1111/1467-9876.00177 

Caballero, R.J., Krishnamurthy, A., 2008. Collective Risk Management in a Flight to 

Quality Episode. J. Finance 63, 2195–2230. doi:10.1111/j.1540-6261.2008.01394.x 

Campbell, J.Y., Hentschel, L., 1992. No News is Good News: An Asymmetric Model of 

Changing Volatility in Stock Returns. J. financ. econ. 31, 281–318. 

doi:10.1016/0304-405X(92)90037-X 

Chabi-Yo, F., Ruenzi, S., Weigert, F., 2018. Crash Sensitivity and the Cross Section of 

Expected Stock Returns. J. Financ. Quant. Anal. 53, 1059–1100. 

econ1
Highlight

econ1
Highlight

econ1
Highlight

econ1
Highlight

econ1
Highlight

econ1
Highlight



42 

doi:10.1017/S0022109018000121 

Chaouche, A., Bacro, J.-N., 2006. Statistical Inference for the Generalized Pareto 

Distribution: Maximum Likelihood Revisited. Commun. Stat. - Theory Methods 35, 

785–802. doi:10.1080/03610920500501429 

Charpentier, A., Fermanian, J.-D., Scaillet, O., 2007. The Estimation of Copulas: Theory 

and Practice, in: Rank, J. (Ed.), Copulas: From Theory to Applications in Finance. 

Risk Books, London, pp. 35–62. 

Chavez-Demoulin, V., Davison, A.C., 2012. Modelling Tme Series Extremes. 

REVSTAT-Statistical J. 10, 109–133. 

Choulakian, V., Stephens, M.A., 2001. Goodness-of-Fit Tests for the Generalized Pareto 

Distribution. Technometrics 43, 478–484. doi:10.1198/00401700152672573 

Coles, S.G., Heffernan, J., Tawn, J.A., 1999. Dependence Measures for Extreme Value 

Analyses. Extremes 2, 339–365. doi:10.1023/A:31009963131610 

Coles, S.G., Pericchi, L.R., Sisson, S., 2003. A Fully Probabilistic Approach to Extreme 

Rainfall Modeling. J. Hydrol. 273, 35–50. doi:10.1016/S0022-1694(02)00353-0 

Coles, S.G., Tawn, J.A., 1991. Modelling Extreme Multivariate Events. J. R. Stat. Soc. 

Ser. B 53, 377–392. doi:10.2307/2345748 

Conine, T.E., Tamarkin, M.J., 1981. On Diversification Given Asymmetry in Returns. J. 

Finance 36, 1143–1155. doi:10.1111/j.1540-6261.1981.tb01081.x 

de Haan, L., Ferreira, A., 2006. Extreme Value Theory: An Introduction, Springer. 

Springer. doi:10.1007/0-387-33477-7 

de Haan, L., Jansen, D.W., Koedijk, K., de Vries, C.G., 1994. Safety First Portfolio 

Selection, Extreme Value Theory and Long Run Asset Risks, in: Galambos, J., 

Lechner, J., Simiu, E. (Eds.), Extreme Value Theory and Applications. Springer US, 

Gaithersburg Maryland, pp. 471–487. doi:10.1007/978-1-4613-3638-9_29 

de Haan, L., Resnick, S.I., 1977. Limit Theory for Multivariate Sample Extremes. 

Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 40, 317–337. 

doi:10.1007/BF00533086 

de Haan, L., Resnick, S.I., Rootzen, H., De Vries, C.G., 1989. Extremal Behaviour of 

Solutions to a Stochastic Difference Equation with Applications to Arch Processes. 

Stoch. Process. their Appl. 32, 213–224. 

de Haan, L., Zhou, C., 2011. Extreme Residual Dependence for Random Vectors and 

Processes. Adv. Appl. Probab. 43, 217–242. doi:10.1239/aap/1300198520 

Deheuvels, P., 1978. Caractérisation Compléte des Lois Extrêmes Multivariêes et de la 

Convergence des Types Extrêmes. Publ. Inst. Stat. Univ. Paris 23, 1–36. 

Derrien, F., Kecskés, A., 2013. The Real Effects of Financial Shocks: Evidence from 

Exogenous Changes in Analyst Coverage. J. Finance 68, 1407–1440. 

doi:10.1111/jofi.12042 

Driessen, J., Laeven, L., 2007. International Portfolio Diversification Benefits: Cross-

Country Evidence from a Local Perspective. J. Bank. Financ. 31, 1693–1712. 

doi:10.1016/j.jbankfin.2006.11.006 

Durante, F., 2009. Construction of Non-exchangeable Bivariate Distribution Functions. 

Stat. Pap. 50, 383–391. doi:10.1007/s00362-007-0064-5 

econ1
Highlight

econ1
Highlight

econ1
Highlight



43 

Embrechts, P., Klüppelberg, C., Mikosch, T., 1997. Modelling Extremal Events: for 

Insurance and Finance, 1st ed. Springer Berlin Heidelberg. doi:10.1007/978-3-642-

33483-2 

Embrechts, P., McNeil, A.J., Straumann, D., 2010. Correlation and Dependence in Risk 

Management: Properties and Pitfalls, in: Dempster, M.A.H. (Ed.), Risk 

Management. Cambridge University Press, Cambridge, pp. 176–223. 

doi:10.1017/cbo9780511615337.008 

Errunza, V., Hogan, K., Hung, M.-W., 1999. Can the Gains from International 

Diversification Be Achieved without Trading Abroad? J. Finance 54, 2075–2107. 

doi:10.1111/0022-1082.00182 

Forbes, K.J., Rigobon, R., 2002. No Contagion, only Interdependence: Measuring Stock 

Market Comovements. J. Finance 57, 2223–2261. doi:10.1111/0022-1082.00494 

Galambos, J., 1975. Order Statistics of Samples from Multivariate Distributions. J. Am. 

Stat. Assoc. 70, 674–680. doi:10.2307/2285954 

Gallant, A.R., Rossi, P.E., Tauchen, G., 1992. Stock-Prices and Volume. Rev. Financ. 

Stud. 5, 199–242. doi:10.1093/rfs/5.2.199 

Gandal, N., Hamrick, J.T., Moore, T., Oberman, T., 2018. Price Manipulation in the 

Bitcoin Ecosystem. J. Monet. Econ. 95, 86–96. doi:10.1016/j.jmoneco.2017.12.004 

Geenens, G., Charpentier, A., Paindaveine, D., 2017. Probit Transformation for 

Nonparametric Kernel Estimation of the Copula Density. Bernoulli 23, 1848–1873. 

doi:10.3150/15-BEJ798 

Gijbels, I., Mielniczuk, J., 1990. Estimating the Density of a Copula Function. Commun. 

Stat. - Theory Methods 19, 445–464. doi:10.1080/03610929008830212 

Gkillas, K., Longin, F., Tsagkanos, A., 2017. Asymmetric Exceedance-Time Model: An 

Optimal Threshold Approach Based on Extreme Value Theory. SSRN Electron. J. 

doi:10.2139/ssrn.3016145 

Goetzmann, W.N., Li, L., Rouwenhorst, K.G., 2005. Long‐Term Global Market 

Correlations. J. Bus. 78, 1–38. doi:10.1086/426518 

Gumbel, E.J., 1961. Bivariate Logistic Distributions. J. Am. Stat. Assoc. 56, 335–349. 

doi:10.1080/01621459.1961.10482117 

Gumbel, E.J., 1960. Bivariate Exponential Distributions. J. Am. Stat. Assoc. 55, 698–

707. doi:10.1080/01621459.1960.10483368 

Härdle, W.K., Harvey, C.R., Reule, R.C.G., 2019. Understanding Cryptocurrencies. 

SSRN Electron. J. doi:10.2139/ssrn.3360304 

Hartmann, P., Straetmans, S., Vries, C.G. de, 2004. Asset Market Linkages in Crisis 

Periods. Rev. Econ. Stat. 86, 313–326. doi:10.1162/003465304323023831 

Harvey, C.R., Liechty, J.C., Liechty, M.W., Peter, M., 2010. Portfolio Selection with 

Higher Moments. Quant. Financ. 10, 469–485. doi:10.1080/14697681003756877 

Hillier, D., Draper, P., Faff, R., 2006. Do Precious Metals Shine? An Investment 

Perspective. Financ. Anal. J. 62, 98–106. doi:10.2469/faj.v62.n2.4085 

Hosking, J.R.M., Wallis, J.R., 1987. Parameter and Quantile Estimation for the 

Generalized Pareto Distribution. Technometrics 29, 339–349. 

doi:10.1080/00401706.1987.10488243 

econ1
Highlight

econ1
Highlight

econ1
Highlight

econ1
Highlight



44 

Hougaard, P., 1986. A Class of Multivanate Failure Time Distributions. Biometrika 73, 

671–678. doi:10.1093/biomet/73.3.671 

Huser, R., Davison, A.C., Genton, M.G., 2016. Likelihood Estimators for Multivariate 

Extremes. Extremes 19, 79–103. doi:10.1007/s10687-015-0230-4 

Hyung, N., De Vries, C.G., 2005. Portfolio Diversification Effects of Downside Risk. J. 

Financ. Econom. 3, 107–125. doi:10.1093/jjfinec/nbi004 

Jaffe, J.F., 1989. Gold and Gold Stocks as Investments for Institutional Portfolios. Financ. 

Anal. J. 45, 53–59. doi:10.2469/faj.v45.n2.53 

Jansen, D.W., de Vries, C.G., 1991. On the Frequency of Large Stock Returns: Putting 

Booms and Busts into Perspective. Rev. Econ. Stat. 73, 18. doi:10.2307/2109682 

Jansen, D.W., Koedijk, K.G., de Vries, C.G., 2000. Portfolio Selection with Limited 

Downside Risk. J. Empir. Financ. 7, 247–269. doi:10.1016/S0927-5398(00)00016-

5 

Joe, H., 1990. Families of Min-Stable Multivariate Exponential and Multivariate Extreme 

Value Distributions. Stat. Probab. Lett. 9, 75–81. doi:10.1016/0167-7152(90)90098-

R 

Jorion, P., 1985. International Portfolio Diversification with Estimation Risk. J. Bus. 58, 

259–278. doi:10.2307/2352997 

Kalemli-Ozcan, S., Papaioannou, E., Peydro, J.-L., 2013. Financial Regulation, Financial 

Globalization, and the Synchronization of Economic Activity. J. Finance 68, 1179–

1228. doi:10.1111/jofi.12025 

Kan, R., Zhou, G., 2007. Optimal Portfolio Choice with Parameter Uncertainty. J. Financ. 

Quant. Anal. 42, 621–656. doi:10.1017/s0022109000004129 

Kane, A., 1982. Skewness Preference and Portfolio Choice. J. Financ. Quant. Anal. 17, 

15. doi:10.2307/2330926 

Kearns, P., Pagan, A., 1997. Estimating the Density Tail Index for Financial Time Series. 

Rev. Econ. Stat. 79, 171–175. doi:10.1162/003465397556755 

Koch, S.P., Barker, J.W., Vermersch, J.A., 1991. Gulf of Mexico Loop Current and 

Deepwater Drilling. J. Pet. Technol. 43, 1046–1119. doi:10.2118/20434-PA 

Leadbetter, M.R., 1991. On a Basis for “Peaks Over Threshold” Modeling. Stat. Probab. 

Lett. 12, 357–362. doi:10.1016/0167-7152(91)90107-3 

Leadbetter, M.R., Lindgren, G., Rootzen, H., 1983. Extremes and Related |Properties of 

Random Sequences and Processes, Springer series in Statistics. Springer New York. 

doi:10.1007/978-1-4612-5449-2 

Ledford, A.W., Tawn, J.A., 1997. Modelling Dependence within Joint Tail Regions. J. R. 

Stat. Soc. Ser. B (Statistical Methodol. 59, 475–499. doi:10.1111/1467-9868.00080 

Ledford, A.W., Tawn, J.A., 1996. Statistics for Near Independence in Multivariate 

Extreme Values. Biometrika 83, 169–187. doi:10.1093/biomet/83.1.169 

Levy, H., Sarnat, M., 1972. Safety First-An Expected Utility Principle. J. Financ. Quant. 

Anal. 7, 1829. doi:10.2307/2329805 

Levy, H., Sarnat, M., 1970. International Diversification of Investment Portfolios. Am. 

Econ. Rev. 60, 668–675. doi:10.2307/1818410 

econ1
Highlight

econ1
Highlight

econ1
Highlight



45 

Longin, F., 2000. From Value at Risk to Stress Testing: The Extreme Value Approach. J. 

Bank. Financ. 24, 1097–1130. doi:10.1016/S0378-4266(99)00077-1 

Longin, F., Solnik, B., 2001. Extreme Correlation of International Equity Markets. J. 

Finance 56, 649–676. doi:10.1111/0022-1082.00340 

Longin, F., Solnik, B., 1995. Is the Correlation in International Equity Returns Constant: 

1960-1990? J. Int. Money Financ. 14, 3–26. doi:10.1016/0261-5606(94)00001-H 

Mackintosh, J., 2017. What Is Bitcoin? Not What You Think [WWW Document]. Wall 

Str. J. URL https://www.wsj.com/articles/what-is-bitcoin-not-what-you-think-

1511990064 (accessed 9.21.18). 

Massacci, D., 2017. Tail Risk Dynamics in Stock Returns: Links to the Macroeconomy 

and Global Markets Connectedness. Manage. Sci. 63, 3072–3089. 

doi:10.1287/mnsc.2016.2488 

McNeil, A.J., Frey, R., 2000. Estimation of Tail-Related Risk Measures for 

Heteroscedastic Financial Time Series: An Extreme Value Approach. J. Empir. 

Financ. 7, 271–300. doi:10.1016/S0927-5398(00)00012-8 

Meintanis, S.G., Bassiakos, Y., 2007. Data-Transformation and Test of Fit for the 

Generalized Pareto Hypothesis. Commun. Stat. - Theory Methods 36, 833–849. 

doi:10.1080/03610920601034148 

Merton, R.C., 1980. On Estimating the Expected Return on the Market: An Exploratory 

Investigation. J. financ. econ. 8, 323–361. doi:10.1016/0304-405X(80)90007-0 

Nagler, T., 2016. kdecopula: An R Package for the Kernel Estimation of Bivariate Copula 

Densities. J. Stat. Softw. 84, 1–22. doi:10.18637/jss.v084.i07 

Nakamoto, S., 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Www.Bitcoin.Org 

9. doi:10.1007/s10838-008-9062-0 

Nelson, R.B., 2007. Extremes of Nonexchangeability. Stat. Pap. 48, 329–336. 

doi:10.1007/s00362-006-0336-5 

Pickands, J., 1981. Multivariate Extreme Value Distributions. Bull. Inst. Internat. Stat. 

49, 859–878. 

Pickands, J., 1975. Statistical Inference Using Extreme Order Statistics. Ann. Stat. 3, 

119–131. doi:10.1214/aos/1176343003 

Pickands, J., 1971. The Two-dimensional Poisson Process and Extremal Processes. J. 

Appl. Probab. 8, 745–756. doi:10.2307/3212238 

Poon, S.H., Rockinger, M., Tawn, J., 2004. Extreme Value Dependence in Financial 

Markets: Diagnostics, Models, and Financial Implications. Rev. Financ. Stud. 17, 

581–610. doi:10.1093/rfs/hhg058 

Poon, S.H., Rockinger, M., Tawn, J., 2003. Mοdelling Extreme-Value Dependence in 

International Stock Markets. Stat. Sin. 13, 929–953. doi:10.2307/24307155 

Ranaldo, A., Söderlind, P., 2010. Safe Haven Currencies. Rev. Financ. 14, 385–407. 

doi:10.1093/rof/rfq007 

Rapach, D.E., Strauss, J.K., Zhou, G., 2013. International Stock Return Predictability: 

What is the Role of the United States? J. Finance 68, 1633–1662. 

doi:10.1111/jofi.12041 

econ1
Highlight

econ1
Highlight

econ1
Highlight



46 

Reiss, R.-D.D., Thomas, M., 2001. Statistical Analysis of Extreme Values : From 

Insurance, Finance, Hydrology, and Other Fields. Birkhäuser. 

Resnick, S.I., 1987. Extreme Values, Regular Variation and Point Processes, 1st ed, 

Springer Series in Operations Research and Financial Engineering. Springer New 

York, New York, NY. doi:10.1007/978-0-387-75953-1 

Richardson, M., Smith, T., 1993. A Test for Multivariate Normality in Stock Returns. J. 

Bus. 66, 295–321. doi:10.2307/2353314 

Rob, P., 2018. Why Bitcoin won’t Replace Gold [WWW Document]. Bus. Insid. URL 

https://www.businessinsider.com/why-bitcoin-wont-replace-gold-2018-8 (accessed 

9.21.18). 

Roy, A.D., 1952. Safety First and the Holding of Assets. Econometrica 20, 431. 

doi:10.2307/1907413 

Scott, R.C., Horvath, P.A., 1980. On the Direction of Preference for Moments of Higher 

Order than the Variance. J. Finance 35, 915. doi:10.2307/2327209 

Sibuya, M., 1960. Bivariate Extreme Statistics. Ann. Inst. Stat. Math. 11, 195–210. 

doi:https://doi.org/10.1007/BF01682329 

Simaan, Y., 1997. Estimation Risk in Portfolio Selection: The Mean Variance Model 

versus the Mean Absolute Deviation Model. Manage. Sci. 43, 1437–1446. 

doi:10.1287/mnsc.43.10.1437 

Sklar, A., 1959. Fonctions De Répartition à N Dimensions et Leurs Marges. Publ. Inst. 

Stat. Univ. Paris 8, 229–231. doi:10.1007/978-3-642-33590-7 

Smith, R.L., Tawn, J.A., Coles, S.G., 1997. Markov Chain Models for Threshold 

Exceedances. Biometrika 84, 249–268. doi:10.2307/2337455 

Solnik, B., 1995. Why Not Diversify Internationally Rather Than Domestically? Financ. 

Anal. J. 51, 89–94. doi:10.2469/faj.v51.n1.1864 

Somerset Webb, M., 2018. Forget Bitcoin, Give Me Old-Fashioned Gold as an Inflation 

Hedge | Financial Times [WWW Document]. Financ. Times. URL 

https://www.ft.com/content/d89e5386-074a-11e8-9650-9c0ad2d7c5b5 (accessed 

9.21.18). 

Statman, M., 1987. How Many Stocks Make a Diversified Portfolio? J. Financ. Quant. 

Anal. 22, 353–366. doi:10.2307/2330969 

Stephenson, A., 2003. Simulating Multivariate Extreme Value Distributions of Logistic 

Type. Extremes 6, 49–59. doi:10.1023/A:1026277229992 

Taplin, N., 2018. Bitcoin Isn’t a Currency, It’s a Commodity—Price It That Way - WSJ 

[WWW Document]. Wall Str. J. URL https://www.wsj.com/articles/bitcoin-isnt-a-

currency-its-a-commodityprice-it-that-way-1515041387 (accessed 9.21.18). 

Tawn, J.A., 1990. Modelling Multivariate Extreme Value Distributions. Biometrika 77, 

245–253. doi:10.1093/biomet/77.2.245 

Tawn, J.A., 1988. Bivariate Extreme Value Theory: Models and Estimation. Biometrika 

75, 397–415. doi:10.1093/biomet/75.3.397 

Tiago de Oliveira, J., 1973. Statistical Extremes - A Survey. Center of Applied 

Mathematics, Lisbon. 



47 

Tiago de Oliveira, J., 1962. Structure Theory of Bivariate Extremes Extensions. Estud. 

Mathimaticos Estat. Econ. 7, 165–195. 

Trimborn, S., Härdle, W.K., 2018. CRIX an Index for Cryptocurrencies. J. Empir. Financ. 

49, 107–122. doi:10.1016/J.JEMPFIN.2018.08.004 

van Gelder, P.H.A., van Noortwijk, J.M., Duits, M.T., 1999. Selection of Probability 

Distributions with A Case Study on Extreme Oder River Discharges. Saf. Reliab. 2, 

1475–1480. 

Villasenor-Alva, J.A., Gonzalez-Estrada, E., 2009. A Bootstrap Goodness of Fit Test for 

The Generalized Pareto Distribution. Comput. Stat. Data Anal. 53, 3835–3841. 

doi:10.1016/j.csda.2009.04.001 

Yang, J., Qi, Y., Wang, R., 2009. A Class of Multivariate Copulas with Bivariate Fréchet 

Marginal Copulas. Insur. Math. Econ. 45, 139–147. 

doi:10.1016/J.INSMATHECO.2009.05.007 

Yermack, D., 2017. Corporate Governance and Blockchains. Rev. Financ. 21, 7–31. 

doi:10.1093/rof/rfw074 

Yermack, D., 2015. Is Bitcoin a Real Currency? An Economic Appraisal, in: Handbook 

of Digital Currency: Bitcoin, Innovation, Financial Instruments, and Big Data. 

Elsevier Inc., pp. 31–43. doi:10.1016/B978-0-12-802117-0.00002-3 

You, L., Daigler, R.T., 2010. Is International Diversification Really Beneficial? J. Bank. 

Financ. 34, 163–173. doi:10.1016/j.jbankfin.2009.07.016 

  



48 

Appendix 1. Derivation of the maximum likelihood function of the 

logistic model 

To estimate the parameters of the model presented in Section 3, we use the 

maximum likelihood method, which was developed by Ledford and Tawn (1997) based 

on the threshold-censored likelihood method of Smith et al. (1997). The method also 

applied by Longin and Solnik (2001) is reproduced below. This appendix presents the 

construction of the likelihood function in detail. 

The method is based on a set of assumptions. The observations are assumed to be 

independent. The thresholds 𝑢1 and 𝑢2 are used to select the exceedances (or, 

equivalently, the corresponding tail probabilities 𝑝1 and 𝑝2) and they are independent of 

the variables and time. The method is also based on a censoring assumption. For 

thresholds 𝑢1 and 𝑢2, the space of the events is divided into four regions given by 

{𝐴𝑗𝑘; 𝑗 = 𝐼(𝑋1 > 𝑢1), 𝑘 = 𝐼(𝑋2 > 𝑢2)}, where 𝐼(∙) is the indicator function. The method 

treats observations below the threshold as censored data, and thus, no assumption is made 

for the dependence structure outside 𝐴11. Finally, the dependence in extremes is modeled 

by using a logistic function denoted by 𝐷𝑋. 

The likelihood contribution corresponding to the observation of (𝑋1𝑡, 𝑋2𝑡) at time 

𝑡 falling in region 𝐴𝑗𝑘 is denoted by 𝐿𝑗𝑘(𝑋1𝑡, 𝑋2𝑡) and given by the following: 

𝐿00(𝑋1𝑡, 𝑋2𝑡) = 𝑒𝑥𝑝(−𝐷𝑋(𝑌1, 𝑌2)) 

𝐿10(𝑋1𝑡, 𝑋2𝑡) =  
𝜕𝐹𝑋 

𝑢(𝑋1𝑡, 𝑋2𝑡)

𝜕𝑋1𝑡

= 𝑒𝑥𝑝(−𝐷𝑋(𝑍1, 𝑌2))
𝜕𝐷𝑋

𝜕𝑋1𝑡

(𝑍1, 𝑌2)𝐾1 

𝐿01(𝑋1𝑡, 𝑋2𝑡) =  
𝜕𝐹𝑋 

𝑢(𝑋1𝑡, 𝑋2𝑡)

𝜕𝑋2𝑡

= 𝑒𝑥𝑝(−𝐷𝑋(𝑌1, 𝑍2))
𝜕𝐷𝑋

𝜕𝑋2𝑡

(𝑌1, 𝑍2)𝐾2 

𝐿11(𝑋1𝑡, 𝑋2𝑡) =
𝜕2𝐹𝑋 

𝑢(𝑋1𝑡, 𝑋2𝑡)

𝜕𝑋1𝑡𝜕𝑋2𝑡

=  𝑒𝑥𝑝(−𝐷𝑋(𝑍1, 𝑍2)) (
𝜕𝐷𝑋

𝜕𝑋1𝑡

(𝑍1, 𝑍2)
𝜕𝐷𝑋

𝜕𝑋2𝑡

(𝑍1, 𝑍2)

−
𝜕2𝐷𝑋

𝜕𝑋1𝑡𝜕𝑋2𝑡

(𝑍1, 𝑍2)) 𝐾1𝐾2 

(A1.1) 

where the variables 𝑌𝑖, 𝑍𝑖 and 𝐾𝑖 for 𝑖 = 1,2 are defined by the following: 
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𝑌𝑖 = −1/log𝐹𝑋𝑖

𝑢𝑖  (𝑢𝑖) 

𝑍𝑖 = −1/log𝐹𝑋𝑖

𝑢𝑖(𝑋𝑖𝑡) 

𝐾𝑖 = −𝑝𝑖𝜎𝑖
−1 (1 + 𝜉𝑖(𝑋𝑖𝑡 − 𝑢𝑖)/𝜎𝑖)+

−(1+𝜉𝑖)/𝜉𝑖𝑍𝑖
2 𝑒𝑥𝑝(1/𝑍𝑖) 

(A1.2) 

The likelihood contribution from the observation of (𝑋1t, 𝑋2t) at time 𝑡 for the 

bivariate distribution of exceedances described by a set of parameters  =

 (𝑝1, 𝑝2,1,2, 
1

,  
2

,) is given by the following: 

𝐿(𝑋1𝑡, 𝑋2𝑡, 𝛷) = ∑ 𝐿𝑗𝑘(

𝑗,𝑘∈{0,1}

𝑋1𝑡, 𝑋2𝑡)𝐼𝑗𝑘(𝑋1𝑡, 𝑋2𝑡) (A1.3) 

where 𝐼𝑗𝑘(𝑋1𝑡, 𝑋2𝑡) = 𝛪{(𝑋1𝑡, 𝑋2𝑡) ∈ 𝐴𝑗𝑘}. Hence, the likelihood for a set of 𝑇 

independent observations is given by the following: 

𝐿({𝑋1𝑡, 𝑋2𝑡}𝑡=1,𝑇 , 𝛷) = ∏ 𝐿(𝑋1𝑡, 𝑋2𝑡, 𝛷)

𝑇

𝑡=1

 (A1.4) 
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Appendix 2. Procedure to obtain stationary return series 

To apply the extreme value theory, it is important to work with stationary time 

series. To deal with this issue, we build on the procedure developed by Gallant et al. 

(1992) to remove trends and the work of McNeil and Frey (2000) to take into account 

heteroskedasticity due to volatility clusters.12 We present the data adjustment procedure 

used in this study in detail below. 

Step 1: Detrending the mean 

First, we detrend the mean by regressing the raw original series on a set of 

explanatory variables that take into account the time trends (linear and quadratic) and 

several seasonality effects, as follows: 

𝒚 = 𝒙 ∙ 𝜷 + 𝒖  (A2.1) 

with 𝒚 being log-returns. The matrix 𝒙 comprises the following regressors: a constant 

term, dummy variables to take into account monthly effects: one dummy variable for each 

month of the year except December to avoid multicollinearity, and two variables to take 

into account time trends (a linear and a quadratic one). In total, 𝒙 comprises 13 regressors 

including the constant. The aforementioned regressors are meant to take into account the 

seasonality of a return series. 

Step 2: Detrending the variance 

Second, we detrend the variance of the time series by running the subsequent 

regression, as follows: 

𝐥𝐨𝐠 𝒖𝟐 = 𝒙′𝜸 + 𝝐 (A2.2) 

where it has to be noted that the same set of explanatory variables is used to remove the 

trend from the variance. 

Step 3: Adjusting the time series 

Third, we perform the following transformation to compute the adjusted time 

series: 

 

 

12 The application of extreme value theory on real data is based on the assumption of independent 

consecutive extreme values. However, with volatility clustering, this assumption is violated. This leads to 

model misspecification, especially in terms of the degree of heaviness of distribution tails (see Kearns and 

Pagan, 1997; Chavez-Demoulin and Davison, 2012, Massacci, 2017, among others). 
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𝒚𝒂𝒅𝒋 = 𝒂 + 𝒃 (
�̂�

𝒆𝒙‘𝜸

𝟐

) (A2.3) 

where coefficients 𝒂 and 𝒃 in Equation (A2.3) are determined by solving a system of two 

equations with two unknowns, where the adjusted time series is required to have the same 

mean and variance as the original series. 

Step 4: GARCH-type filters 

Fourth, we fit GARCH processes with various forms of marginal distribution (to 

model the alternance of low and high volatility periods). We use different combinations 

for processes’ values ranging from zero lag to a maximum of three lags. We select the 

best model based on the Akaike Information Criterion (𝐴𝐼𝐶). By fitting such a process, 

the sequence of residuals is based on the assumption of independent and identically 

distributed random variables. 
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Appendix 3. Data visualization with nonparametric copulas 

We use nonparametric copulas to conduct a preliminary analysis of the 

dependence patterns in our data. Nonparametric copulas are flexible, as they directly fit 

the data. They can be used to assess the validity of a parametric model (the logistic model 

with the Gumbel-Hougaard copula in our case) by taking into consideration the 

misspecification risk (a type of model risk). 

In this appendix, we present the statistical procedure proposed by Geenens et al. 

(2017) via a kernel-type copula density estimator. We first provide a brief discussion of 

this statistical procedure. Then, following our four-step research strategy, we provide a 

brief representation of the kernel-type copula density estimation by using surface plots. 

Surface plots allow us to visually determine the functional relationships of the data to 

obtain preliminary evidence of tail dependence patterns. 

Deheuvels (1978) proposed an earlier nonparametric estimate of the copula 

function 𝐶(𝑦1, 𝑦2), known as empirical copula (where 𝐶(𝑦1, 𝑦2) = 𝑃𝑟(𝑌1 ≤ 𝑦1, 𝑌2 ≤

𝑦2) = 𝐹 (𝐹𝑋1 

−1(𝑦1 ), 𝐹𝑋2 

−1(𝑦2 )) where 𝑦1, 𝑦2 ∈ [0,1], see subsection 3.2). The empirical 

copula is essentially the empirical distribution of the rank-transformed data. A direct 

derivation of the empirical copula is the estimation of the empirical copula density, which 

can be considered as a nonparametric approach. The empirical copula density, however, 

is heavily affected by boundary bias issues (i.e., the empirical copula density is not a 

consistent estimator on the boundaries of the interval [0,1]). The so-called boundary bias 

is present at the boundaries as well as in their neighborhood, as noted by Charpentier et 

al. (2007). The use of kernel methods was an earlier solution to these issues. Behnen et 

al. (1985), and Gijbels and Mielniczuk (1990) proposed procedures relying on symmetric 

kernels. Although kernel estimators are considered to be more suitable nonparametric 

density estimators, they do not eliminate the boundary bias. More recently, Geenens et al. 

(2017) addressed this problem by transforming the uniform marginals of the copula 

density into normal distributions via the probit function. They proposed an estimate of 

the copula density via back-transformation by using a local likelihood estimator with 

nearest-neighbor bandwidths, which is accomplished without boundary problems (we 

refer to the studies of Geenens et al., 2017 and Nagler, 2018, for more information 

regarding the estimation procedure of the nonparametric density). 

Figure 10 depicts surface plots for the nonparametric kernel-type copula density 

estimator for international equity markets, including bitcoin or gold. Figure 10A refers to 
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equity markets (Step 1), i.e., European and US equity markets. Figures 10B and 10C refer 

to equity markets and bitcoin (Step 2), i.e., the European equity market and bitcoin and 

the US equity market and bitcoin, respectively. Figures 10D and 10E refer to equity 

markets and gold (Step 3), i.e., the European equity market and gold and the US equity 

market and gold, respectively. Figure 10F refers to bitcoin and gold (Step 4). More 

specifically, regarding Step 1 and Figure 10A, we find that the density is significantly 

higher in bear markets and lower in bull markets. This provides initial graphical evidence 

of strong tail dependence between European and US equity markets during stock market 

crashes. Regarding Step 2 and Figures 10B and 10C, we find a weak level of dependency 

between equity markets and bitcoin, both in bear and bull markets. Regarding Step 3 and 

Figures 10D and 10E, a similar result is obtained as in the previous step. Finally, 

regarding Step 4 and Figure 10F, we also find a weak level of dependency, both in bear 

and bull markets. 
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Appendix 4. Computation of optimal threshold levels 

Over a high threshold 𝑢, the peaks-over-threshold method constitutes an efficient 

way to model extremes via the general Pareto distribution (GPD). However, one of the 

most important factors when dealing with extremes is the selection of threshold 𝑢. A too 

low threshold value induces a significant estimation bias due to observations not 

belonging to the distribution tails considered as exceedances (with the asymptotic 

assumption being violated). A too high threshold value leads to inefficiency with 

increasing standard errors due to the reduced size of the estimation sample (although the 

asymptotic assumption is stronger and leads to bias reduction). An optimal threshold 

optimizes the trade-off between inefficiency and sample bias. 

In the existing literature, several approaches to this issue have been proposed. In 

this paper, we apply the procedure proposed by Gkillas et al. (2017) using the parametric 

bootstrap goodness-of-fit test of Villasenor-Alva and Gonzalez-Estrada (2009) for the 

computation of optimal thresholds. In applying this procedure, we take into consideration 

the error of accepting that the GPD is a distribution for a random sample, defined by a 

threshold 𝑢, when 𝑢 is not appropriate (be it either too high or too low). We minimize 

this error via this powerful goodness-of-fit test. This test can provide results for the whole 

parameter space in relation to other goodness-of-fit tests proposed in the literature (e.g. 

Choulakian and Stephens, 2001 and Meintanis and Bassiakos, 2007). Furthermore, we 

apply a parametric bias-corrected approach based on the maximum likelihood procedure 

to reduce the sample bias observed in small samples (see subsection 3.2). We describe 

the procedure for the selection of optimal thresholds in detail in this appendix. 

Let 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} be a sequence of independent and identically distributed 

random variables defined on the positive real numbers with a continuous cumulative 

distribution function 𝐹𝑋, for 𝑖 = 1, 2, . . , 𝑛. Additionally, let 𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛) be the 

corresponding order statistics. Our approach is developed in the following steps. 

Step 1: Extracting subsequences associated with unknown thresholds 

We extract 𝑛 subsequences from 𝑋, such that 𝑋𝑘𝑛

′ = {𝑋(𝑘𝑛)
′ , 𝑋(𝑘𝑛+1)

′ , … , 𝑋(𝑛)
′ }

𝑘𝑛
⊆

𝑋 for 𝑘𝑛 = 1, … , 𝑛, where 𝑘𝑛 corresponds to a number of upper order statistics and can 

be associated with the unknown threshold 𝑢 of the GPD defined in subsection 3.1. 
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Step 2: Extracting the optimal solution 

We apply an iterative 𝑛-step algorithm and we select the 𝑘𝑛 number of upper order 

statistic that corresponds to the maximal 𝑝-value (𝑝) of the intersection-union goodness-

of-fit test of Villasenor-Alva and Gonzalez-Estrada (2009), as follows: 

𝑢 = 𝑋(𝑘𝑛)
′ =̂ max

𝑘𝑛=1,…,𝑛
{𝑝(𝑘𝑛), 𝑝(𝑘𝑛+1), … , 𝑝(𝑛)}, 𝑘𝑛 ∈ {1, … , 𝑛} (A4.1) 

for the null hypothesis, i.e., 𝐻0: 𝐹𝑋
𝑢(𝑥)~𝐺𝜉,𝜎(𝑥), defined by two subclasses of GPD, the 

𝐴+, which corresponds to 𝐻0
+: 𝐹𝑋

𝑢(𝑥)~𝐺𝜉,𝜎(𝑥) with 𝜉 ≥ 0, and the 𝐴−, which corresponds 

to 𝐻0
−: 𝐹𝑋

𝑢(𝑥)~𝐺𝜉,𝜎(𝑥) with 𝜉 < 0. Thus, 𝐻0: 𝐹 ∈ (𝐴+ ∪ 𝐴−), which is rejected whenever 

both hypotheses 𝐻0
+ and 𝐻0

− are rejected. 

Step 3: Extracting the optimal threshold 

The optimal threshold 𝑢 corresponds to the optimal 𝑘𝑛
𝑡ℎ upper order statistic of 

the previous step. 

Step 4: Bootstrapping the goodness-of-fit test 

We apply this procedure in each distribution tail separately for 999 bootstrap 

samples. 
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Appendix 5. Risk-return portfolio optimization 

We propose a risk-return-oriented optimal asset allocation strategy to take the 

point of view of investors who care about the extreme losses on their portfolios. In this 

case, their risk preferences can be expressed in terms of tail risk (Jansen et al., 2000). We 

study the effects of including a riskier asset in an initial position in terms of diversification 

gains to highlight the importance of potential low extreme correlation of asset returns 

considered. The details of the portfolio optimization procedure, namely, the equal-𝑉𝑎𝑅 

or equal-𝐸𝑆 portfolios, are presented below. 

Consider a finite number of risky assets 𝑖 = 1, 2, … , 𝑁. For a given time period, 

these assets produce returns 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑁}. The returns measure the relative 

change, either an increase or a decrease of the asset prices during the time period 

examined. The returns are unknown at the time of portfolio allocation, and hence, they 

are viewed as random variables. Let us suppose that an investor has a budget of one unit 

- without loss of generality - and can select on the positions 𝑤 = {𝑤1, 𝑤2, … , 𝑤𝑁} in these 

assets, such that 𝑤𝑖 ≥ 0, that is, no short sales are allowed, and ∑ 𝑤𝑖
𝑁
𝑖=1 = 𝑤𝑇1𝑁 = 1, 

which reflects the budget constraint. Consequently, the return of the portfolio for a given 

time period is equal to 𝑟 = ∑ 𝑤𝑖𝑋𝑖 = 𝑤𝑇𝑁
𝑖=1 𝑋, while the expected return is equal to 

𝐸(𝑟) = 𝑤𝑇𝐸(𝑋). 

Let 𝑇𝑅(𝑝) = {𝑇𝑅1(𝑝), 𝑇𝑅2(𝑝), … , 𝑇𝑅𝑁(𝑝)} be a tail risk measure (e.g. the 𝑉𝑎𝑅 

or 𝐸𝑆) with the corresponding order statistics 𝑇𝑅(1)(𝑝) ≤ 𝑇𝑅(2)(𝑝) ≤ ⋯ ≤ 𝑇𝑅(𝑁)(𝑝). 

For a level of risk being equal to 𝑇𝑅(1)(𝑝), let us consider the solution of the following 

optimization problem: 

max
𝑤∈ℝ𝑁

 𝐸(𝑟) ≝ 𝑤𝑇 𝐸(𝑋) 

𝑠. 𝑡.     𝑇𝑅(𝑝, 𝑤𝑇𝑋) ∶=  𝑇𝑅(1)(𝑝), 

𝑤𝑇1𝑁 = 1, 

𝑤 ≥ 0 

(A5.1) 

where 𝑝 corresponds to the 𝑝-quantile of the cumulative distribution, defining the loss to 

be expected in (𝑝 ∙ 100)% of the times. 

The optimization problem above is based on tail risk constraints, and thus, it is 

considered inherently more difficult than the variance optimization problem, for example. 

An optimization problem based on tail risk measures, such as the 𝑉𝑎𝑅 which is 

nonconvex (see Artzner et al., 1999), can have several local maxima increasing the 
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computational complexity. In this appendix, we apply an iterative algorithm to solve the 

problem of Equation (A5.1). In particular, the optimization procedure is implemented in 

the following three steps. 

Step 1: Computation of tail risk measures 

First, we compute the tail risk measures (𝑉𝑎𝑅 or 𝐸𝑆) for a given probability level 

𝑝 for the position 𝑇𝑅(1)(𝑝) corresponding to the lowest level of tail risk of the assets 

considered. The risk measures are estimated as functions of the parameters of the general 

Pareto distribution (GPD) defined in subsection 3.1 by the following: 

𝑉𝑎𝑅(1)(𝑝) = 𝑢(1) +
𝜎(1)

𝜉(1)
(

𝑛

𝑘𝑛(1)
(1 − 𝑝)−𝜉(1) − 1) (A5.2) 

𝐸𝑆(1)(𝑝) =
1

1 − 𝜉(1)
(𝑉𝑎𝑅(1)(𝑝) + 𝜎(1) − 𝑢(1)𝜉(1)) (A5.3) 

where 𝑢(1) represents the threshold, 𝑘𝑛(1) is the number of exceedances over threshold 

𝑢(1), 𝑛 is the number of observations, 𝜎(1) > 0 is the scale parameter, and 𝜉(1) ∈ ℝ 

corresponds to the tail index. 

Step 2: Computation of local solutions 

Second, we incorporate 𝑁 − 1 riskier assets (in terms of tail risk) and compute 

their optimal weights, such that the tail risk value of the new position is equal to the tail 

risk value of the position given by 𝑇𝑅(1)(𝑝). However, due to the high complexity 

observed in the dependence structure of extremes, an exact solution is not always obtained 

for the first constraint 𝑇𝑅(𝑝, 𝑤𝑇𝑋) ∶= 𝑇𝑅(1)(𝑝) as the events become more extreme and 

the dependence structure tends to total dependence. In this case, an approximate solution 

is obtained by the following: 

arg min
𝑤∈ℝ𝑁

|𝑇𝑅(1)(𝑝) − 𝑇𝑅(𝑝, 𝑤𝑇𝑋)| (A5.4) 

Step 3: Selection of the optimal solution 

Third, among the local solutions obtained in Step 2 satisfying the tail risk 

constraint, we select the optimal solution which maximizes the expected return 𝐸(𝑟) of 

the portfolio, that is: 

max
𝑤∈ℝ𝑁

 𝐸(𝑟) ≝ 𝑤𝑇 𝐸(𝑋) (A5.5) 



58 

where 𝐸(𝑟) represents the expected return of the portfolio, the usual variable maximized 

in portfolio analysis.  
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Table 1. Estimation of the bivariate distribution of the return exceedances for the European and US equity 

markets 

Panel A: Negative return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐸𝑈 𝜎𝐸𝑈 𝜉𝐸𝑈  𝑢𝑈𝑆 𝜎𝑈𝑆 𝜉𝑈𝑆 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

5% 0.036 0.015 0.057 0.031 0.026 -0.505 0.379 0.890 203.487 3.726 25.008 

  (0.005) (0.280)  (0.008) (0.278) (0.058) (0.004) [0.000] [0.000] [0.000] 

10% 0.029 0.010 0.267 0.023 0.013 0.058 0.408 0.841 68.944 4.124 13.057 

  (0.003) (0.237)  (0.004) (0.249) (0.040) (0.012) [0.000] [0.000] [0.000] 

20% 0.018 0.014 0.017 0.013 0.014 0.013 0.409 0.831 36.642 2.152 7.426 

  (0.002) (0.107)  (0.002) (0.136) (0.029) (0.023) [0.000] [0.031] [0.000] 

30% 0.008 0.019 −0.099 0.007 0.015 −0.013 0.378 0.875 28.733 1.361 4.106 

  (0.002) (0.068)  (0.002) (0.100) (0.022) (0.030) [0.000] [0.173] [0.000] 

40% 0.003 0.019 -0.087 0.003 0.014 0.009 0.365 0.877 26.008 0.839 3.638 

  (0.002) (0.064)  (0.002) (0.088) (0.018) (0.034) [0.000] [0.400] [0.000] 

50% 0.000 0.019 -0.075 0.000 0.013 0.035 0.351 0.888 24.641 0.694 3.256 

  (0.002) (0.063)  (0.001) (0.079) (0.016) (0.036) [0.000] [0.487] [0.001] 

3.01% 0.042 0.021 -0.130 0.041 0.023 -0.393 0.349 0.878 63.419 3.130 8.678 

3.00%  (0.008) (0.288)  (0.007) (0.260) (0.071) (0.014) [0.000] [0.001] [0.000] 

Panel B: Positive return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐸𝑈 𝜎𝐸𝑈 𝜉𝐸𝑈  𝑢𝑈𝑆 𝜎𝑈𝑆 𝜉𝑈𝑆 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

50% 0.000 0.017 -0.151 0.000 0.014 -0.122 0.385 0.864 24.194 0.169 27.155 

  (0.001) (0.041)  (0.001) (0.056) (0.016) (0.036) [0.000] [0.865] [0.000] 

40% 0.006 0.014 -0.094 0.004 0.012 -0.055 0.435 0.810 25.739 0.619 30.949 

  (0.001) (0.058)  (0.001) (0.074) (0.020) (0.031) [0.000] [0.535] [0.000] 

30% 0.010 0.012 -0.050 0.008 0.011 -0.012 0.472 0.785 29.597 0.629 36.908 

  (0.001) (0.079)  (0.001) (0.094) (0.024) (0.027) [0.000] [0.529] [0.000] 

20% 0.015 0.012 -0.067 0.012 0.011 -0.008 0.512 0.746 39.503 0.224 52.186 

  (0.002) (0.086)  (0.002) (0.121) (0.031) (0.019) [0.000] [0.822] [0.000] 

10% 0.024 0.009 0.021 0.019 0.012 -0.072 0.566 0.686 153.940 0.486 223.625 

  (0.002) (0.132)  (0.003) (0.165) (0.043) (0.004) [0.000] [0.626] [0.000] 

5% 0.031 0.008 0.094 0.027 0.012 -0.105 0.696 0.521 17.260 0.548 32.592 

  (0.002) (0.203)  (0.004) (0.250) (0.068) (0.030) [0.000] [0.558] [0.000] 

2.00% 0.040 0.003 0.668 0.027 0.012 -0.105 0.795 0.384 6.003 1.379 15.239 

5.01%  (0.002) (0.538)  (0.004) (0.250) (0.087) (0.064) [0.000] [0.168] [0.000] 

Note: This table gives the asymptotic maximum likelihood estimates of the parameters of the bivariate distribution of return exceedances for the European and 

US equity markets represented by the STOXX Europe 600 index and the S&P 500 index. Panel A reports the estimates for the negative return exceedances. 

Panel B reports the estimates for the positive return exceedances. The return exceedances are defined with a threshold 𝑢. Both fixed and optimal threshold 

levels are used for 𝑢. The fixed levels correspond to tail probability 𝑝: 5%, 10%, 20%, 30%, 40% and 50% (the same value of 𝑝 is taken for both variables, 

i.e., 𝑝 = 𝑝𝐸𝑈 = 𝑝𝑈𝑆). The optimal levels are computed by the procedure described in Appendix 4. They are given on the last line of each panel. Eight parameters 

are estimated, as follows: the threshold u associated with the tail probability 𝑝, the dispersion parameter , the tail index 𝜉 for each series, the dependence 

parameter 𝛼 of the logistic function used to model the tail dependence and the correlation of return exceedances 𝜌 (derived from the dependence parameter 𝛼). 

Standard errors are given below in parentheses. The null hypothesis of normality 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟  is also tested by a Wald test. Two cases are considered, i.e., the 

asymptotic case and the finite-sample case. In the asymptotic case, the correlation of normal return exceedances over a threshold tending to infinity is 

theoretically equal to 0. In the finite-sample case, the correlation of return exceedances over a given finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), is computed by 

simulation, assuming that the returns follow a bivariate normal distribution with parameters equal to the empirically observed means and covariance matrix of 

returns. The issue of dependency is studied by considering the following two special cases: asymptotic independence 𝐻0: 𝜌 = 0 and total dependence 𝐻0: 𝜌 =
1. The p-values of the Wald tests are given below in brackets.  
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Table 2Α. Estimation of the bivariate distribution of the return exceedances for the European equity market 

and bitcoin 

Panel A: Negative return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐸𝑈 𝜎𝐸𝑈 𝜉𝐸𝑈 𝑢𝐵𝑇𝐶  𝜎𝐵𝑇𝐶 𝜉𝐵𝑇𝐶  𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

5% 0.035 0.013 -0.084 0.193 0.073 -0.182 0.999 0.019 0.373 0.273 19.616 

  (0.008) (0.549)  (0.045) (0.555) (0.043) (0.050) [0.709] [0.784] [0.000] 

10% 0.029 0.011 0.026 0.149 0.077 -0.176 0.923 0.170 20.099 1.988 97.826 

  (0.003) (0.246)  (0.022) (0.219) (0.040) (0.008) [0.000] [0.047] [0.000] 

20% 0.016 0.019 -0.233 0.075 0.112 -0.288 0.868 0.234 23.400 0.426 76.600 

  (0.003) (0.121)  (0.020) (0.124) (0.034) (0.010) [0.000] [0.795] [0.000] 

30% 0.007 0.022 -0.255 0.027 0.131 -0.312 0.801 0.364 33.791 0.343 59.062 

  (0.003) (0.096)  (0.018) (0.092) (0.030) (0.011) [0.000] [0.732] [0.000] 

40% 0.002 0.021 -0.216 0.011 0.104 -0.166 0.735 0.472 25.625 0.417 28.636 

  (0.003) (0.087)  (0.015) (0.100) (0.026) (0.018) [0.000] [0.677] [0.000] 

50% 0.000 0.021 -0.193 0.000 0.092 -0.086 0.715 0.477 21.525 2.316 23.640 

  (0.003) (0.086)  (0.013) (0.106) (0.023) (0.022) [0.000] [0.021] [0.000] 

11.11% 0.028 0.009 0.136 0.160 0.063 -0.061 0.924 0.164 20.456 0.943 104.412 

9.20%  (0.003) (0.252)  (0.021) (0.253) (0.039) (0.008) [0.000] [0.346] [0.000] 

 

Panel B: Positive return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐸𝑈 𝜎𝐸𝑈 𝜉𝐸𝑈 𝑢𝐵𝑇𝐶  𝜎𝐵𝑇𝐶 𝜉𝐵𝑇𝐶  𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

50% 0.000 0.018 -0.295 0.000 0.094 -0.042 0.649 0.609 21.568 1.083 34.800 

  (0.002) (0.079)  (0.012) (0.088) (0.019) (0.028) [0.000] [0.279] [0.000] 

40% 0.006 0.015 -0.242 0.024 0.099 -0.078 0.749 0.456 25.615 0.029 55.721 

  (0.002) (0.109)  (0.013) (0.095) (0.026) (0.018) [0.000] [0.977] [0.000] 

30% 0.010 0.013 -0.200 0.050 0.099 -0.088 0.810 0.353 31.713 0.001 89.500 

  (0.002) (0.149)  (0.016) (0.111) (0.030) (0.011) [0.000] [1.000] [0.000] 

20% 0.014 0.016 -0.397 0.089 0.095 -0.084 0.868 0.265 105.568 0.555 398.491 

  (0.002) (0.126)  (0.019) (0.142) (0.034) (0.003) [0.000] [0.579] [0.000] 

10% 0.025 0.012 -0.437 0.155 0.075 0.051 0.898 0.209 15.893 2.771 75.683 

  (0.000) (0.077)  (0.025) (0.274) (0.044) (0.013) [0.000] [0.006] [0.000] 

5% 0.031 0.013 -0.716 0.202 0.139 -0.470 0.949 0.084 3.896 0.686 46.574 

  (0.000) (0.060)  (0.081) (0.530) (0.047) (0.021) [0.000] [0.492] [0.000] 

11.11% 0.023 0.013 -0.465 0.114 0.080 0.004 0.906 0.175 65.110 0.113 371.015 

11.14%  (0.019) (0.065)  (0.024) (0.239) (0.065) (0.003) [0.000] [0.910] [0.000] 

Note: This table gives the asymptotic maximum likelihood estimates of the parameters of the bivariate distribution of return exceedances for the European 

equity market, represented by the STOXX Europe 600 index, and bitcoin. Panel A reports the estimates for the negative return exceedances. Panel B reports 

the estimates for the positive return exceedances. The return exceedances are defined with a threshold 𝑢. Both fixed and optimal threshold levels are used for 

𝑢. The fixed levels correspond to tail probability 𝑝: 5%, 10%, 20%, 30%, 40% and 50% (the same value of 𝑝 is taken for both variables, i.e., 𝑝 = 𝑝𝐸𝑈 = 𝑝𝐵𝑇𝐶). 

The optimal levels are computed by the procedure described in Appendix 4. They are given on the last line of each panel. Eight parameters are estimated, as 

follows: the threshold u associated with the tail probability 𝑝, the dispersion parameter , the tail index 𝜉 for each series, the dependence parameter 𝛼 of the 

logistic function used to model the tail dependence and the correlation of return exceedances 𝜌 (derived from the dependence parameter 𝛼). Standard errors 

are given below in parentheses. The null hypothesis of normality 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟  is also tested by a Wald test. Two cases are considered, i.e., the asymptotic case 

and the finite-sample case. In the asymptotic case, the correlation of normal return exceedances over a threshold tending to infinity is theoretically equal to 0. 

In the finite-sample case, the correlation of return exceedances over a given finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), is computed by simulation, assuming that 

the returns follow a bivariate normal distribution with parameters equal to the empirically observed means and covariance matrix of returns. The issue of 

dependency is studied by considering the following two special cases: asymptotic independence 𝐻0: 𝜌 = 0 and total dependence 𝐻0: 𝜌 = 1. The p-values of 

the Wald tests are given below in brackets.  
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Table 2B. Estimation of the bivariate distribution of the return exceedances for the US equity market and bitcoin 

Panel A: Negative return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝑈𝑆 𝜎𝑈𝑆 𝜉𝑈𝑆 𝑢𝐵𝑇𝐶  𝜎𝐵𝑇𝐶  𝜉𝐵𝑇𝐶  𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

5% 0.031 0.026 -0.505 0.193 0.073 -0.182 0.936 0.123 10.250 2.987 73.083 

  (0.008) (0.278)  (0.044) (0.554) (0.042) (0.012) [0.000] [0.002] [0.000] 

10% 0.019 0.019 -0.237 0.149 0.077 -0.176 0.919 0.186 17.183 0.368 75.152 

  (0.006) (0.259)  (0.022) (0.219) (0.041) (0.011) [0.000] [0.713] [0.000] 

20% 0.012 0.010 0.172 0.075 0.112 -0.288 0.827 0.333 444.804 2.343 890.161 

  (0.002) (0.207)  (0.020) (0.124) (0.036) (0.001) [0.000] [0.019] [0.000] 

30% 0.006 0.013 0.011 0.027 0.131 -0.312 0.771 0.414 37.986 1.443 53.672 

  (0.002) (0.125)  (0.018) (0.092) (0.031) (0.011) [0.000] [0.149] [0.000] 

40% 0.002 0.013 0.030 0.011 0.104 -0.166 0.720 0.499 27.258 0.376 27.311 

  (0.002) (0.110)  (0.015) (0.100) (0.026) (0.018) [0.000] [0.707] [0.000] 

50% 0.000 0.012 0.036 0.000 0.092 -0.086 0.686 0.547 23.502 0.761 19.614 

  (0.002) (0.099)  (0.01)3 (0.106) (0.023) (0.023) [0.000] [0.446] [0.000] 

7.28% 0.024 0.018 -0.248 0.160 0.063 -0.061 0.904 0.192 9.803 1.215 41.341 

9.20%  (0.008) (0.397)  (0.021) (0.253) (0.048) (0.020) [0.020] [0.225] [0.000] 

 

Panel B: Positive return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝑈𝑆 𝜎𝑈𝑆 𝜉𝑈𝑆 𝑢𝐵𝑇𝐶  𝜎𝐵𝑇𝐶 𝜉𝐵𝑇𝐶  𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

50% 0.000 0.015 -0.322 0.000 0.094 -0.042 0.657 0.599 22.639 0.442 37.187 

  (0.002) (0.075)  (0.012) (0.088) (0.021) (0.026) [0.000] [0.658] [0.000] 

40% 0.005 0.012 -0.252 0.024 0.099 -0.078 0.710 0.514 27.222 0.751 52.489 

  (0.002) (0.102)  (0.013) (0.095) (0.026) (0.019) [0.000] [0.453] [0.000] 

30% 0.008 0.012 -0.285 0.050 0.099 -0.088 0.835 0.312 30.213 2.012 96.607 

  (0.002) (0.120)  (0.016) (0.111) (0.029) (0.010) [0.000] [0.044] [0.000] 

20% 0.012 0.012 -0.326 0.089 0.095 -0.084 0.851 0.293 249.830 0.389 853.126 

  (0.002) (0.156)  (0.019) (0.142) (0.035) (0.001) [0.000] [0.697] [0.000] 

10% 0.018 0.012 -0.514 0.155 0.075 0.051 0.869 0.260 14.893 2.940 56.938 

  (0.000) (0.063)  (0.025) (0.274) (0.048) (0.017) [0.000] [0.003] [0.000] 

5% 0.025 0.011 -0.665 0.202 0.139 -0.470 0.901 0.200 5.321 0.731 26.387 

  (0.000) (0.074)  (0.081) (0.530) (0.060) (0.038) [0.000] [0.465] [0.000] 

6.00% 0.024 0.008 -0.356 0.182 0.125 -0.331 0.916 0.167 6.139 0.074 36.674 

6.10%  (0.000) (0.127)  (0.057) (0.394) (0.052) (0.027) [0.000] [0.941] [0.000] 

Note: This table gives the asymptotic maximum likelihood estimates of the parameters of the bivariate distribution of return exceedances for the US equity 

markets represented by the S&P 500 index and bitcoin. Panel A reports the estimates for the negative return exceedances. Panel B reports the estimates for the 

positive return exceedances. The return exceedances are defined with a threshold 𝑢. Both fixed and optimal threshold levels are used for 𝑢. The fixed levels 

correspond to tail probability 𝑝: 5%, 10%, 20%, 30%, 40% and 50% (the same value of 𝑝 is taken for both variables: 𝑝 = 𝑝𝑈𝑆 = 𝑝𝐵𝑇𝐶). The optimal levels 

are computed by the procedure described in Appendix 4. They are given on the last line of each panel. Eight parameters are estimated, as follows: the threshold 

u associated with the tail probability 𝑝, the dispersion parameter , the tail index 𝜉 for each series, the dependence parameter 𝛼 of the logistic function used to 

model the tail dependence and the correlation of return exceedances 𝜌 (derived from the dependence parameter 𝛼). Standard errors are given below in 

parentheses. The null hypothesis of normality 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟 is also tested by a Wald test. Two cases are considered, i.e., the asymptotic case and the finite-

sample case. In the asymptotic case, the correlation of normal return exceedances over a threshold tending to infinity is theoretically equal to 0. In the finite-

sample case, the correlation of return exceedances over a given finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), is computed by simulation, assuming that the returns 

follow a bivariate normal distribution with parameters equal to the empirically observed means and covariance matrix of returns. The issue of dependency is 

studied by considering two special cases, i.e., asymptotic independence 𝐻0: 𝜌 = 0 and total dependence 𝐻0: 𝜌 = 1. The p-values of the Wald tests are given 

below in brackets.  
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Table 3A. Estimation of the bivariate distribution of return exceedances for the European equity market and 

gold 

Panel A: Negative return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐸𝑈 𝜎𝐸𝑈 𝜉𝐸𝑈 𝑢𝐺𝑜𝑙𝑑 𝜎𝐺𝑜𝑙𝑑 𝜉𝐺𝑜𝑙𝑑 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

5% 0.036 0.015 0.057 0.033 0.023 -0.260 0.965 0.060 62.609 61.615 977.029 

  (0.005) (0.280)  (0.007) (0.244) (0.033) (0.001) [0.000] [0.000] [0.000] 

10% 0.029 0.010 0.267 0.025 0.015 -0.017 0.915 0.167 176.997 1.592 882.646 

  (0.003) (0.237)  (0.004) (0.184) (0.033) (0.001) [0.000] [0.111] [0.000] 

20% 0.018 0.014 0.017 0.019 0.010 0.178 0.901 0.201 15.461 0.734 61.461 

  (0.002) (0.107)  (0.002) (0.150) (0.025) (0.013) [0.000] [0.462] [0.000] 

30% 0.008 0.019 -0.099 0.011 0.016 -0.058 0.817 0.353 19.397 0.139 35.490 

  (0.002) (0.068)  (0.002) (0.081) (0.024) (0.018) [0.000] [0.890] [0.000] 

40% 0.003 0.019 -0.087 0.004 0.019 -0.124 0.750 0.460 19.210 0.574 22.557 

  (0.002) (0.064)  (0.002) (0.062) (0.021) (0.024) [0.000] [0.566] [0.000] 

50% 0.000 0.019 -0.075 0.000 0.021 -0.152 0.707 0.522 18.782 0.779 17.599 

  (0.002) (0.063)  (0.002) (0.054) (0.018) (0.028) [0.000] [0.436] [0.000] 

3.01% 0.042 0.030 0.021 0.025 0.111 0.014 0.936 0.123 0.135 0.033 11.580 

10.04%  (0.009) (0.008)  (0.016) (0.003) (0.041) (0.077) [0.012] [0.016] [0.000] 

 

Panel B: Positive return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐸𝑈 𝜎𝐸𝑈 𝜉𝐸𝑈 𝑢𝐺𝑜𝑙𝑑 𝜎𝐺𝑜𝑙𝑑 𝜉𝐺𝑜𝑙𝑑 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

50% 0.000 0.017 -0.151 0.000 0.021 -0.285 0.638 0.606 19.628 1.461 31.804 

  (0.001) (0.041)  (0.001) (0.034) (0.017) (0.031) (0.000) (0.144) (0.000) 

40% 0.006 0.014 -0.094 0.006 0.016 -0.173 0.726 0.473 20.201 0.245 42.256 

  (0.001) (0.058)  (0.002) (0.062) (0.022) (0.023) (0.000) (0.807) (0.000) 

30% 0.010 0.012 -0.050 0.012 0.012 -0.055 0.773 0.411 23.845 1.541 57.633 

  (0.001) (0.079)  (0.002) (0.094) (0.026) (0.017) (0.000) (0.123) (0.000) 

20% 0.015 0.012 -0.067 0.024 0.012 -0.064 0.817 0.341 42.200 4.619 123.536 

  (0.002) (0.086)  (0.003) (0.161) (0.031) (0.008) (0.000) (0.000) (0.000) 

10% 0.024 0.009 0.021 0.025 0.013 -0.118 0.801 0.366 44.033 7.837 120.099 

  (0.002) (0.132)  (0.003) (0.159) (0.044) (0.008) (0.000) (0.000) (0.000) 

5% 0.031 0.008 0.094 0.033 0.009 0.111 0.796 0.372 12.308 12.280 32.711 

  (0.002) (0.203)  (0.003) (0.344) (0.061) (0.030) (0.000) (0.000) (0.000) 

2.02% 0.040 0.003 0.668 0.028 0.011 -0.023 0.855 0.270 0.286 0.001 6.507 

8.08%  (0.002) (0.538)  (0.003) (0.204) (0.068) (0.118) [0.044] [0.000] [0.000] 

Note: This table gives the asymptotic maximum likelihood estimates of the parameters of the bivariate distribution of return exceedances for the European 

equity market, represented by the STOXX Europe 600 index, and gold. Panel A reports the estimates for the negative return exceedances. Panel B reports the 

estimates for the positive return exceedances. The return exceedances are defined with a threshold 𝑢. Both fixed and optimal threshold levels are used for 𝑢. 

The fixed levels correspond to tail probability 𝑝: 5%, 10%, 20%, 30%, 40% and 50% (the same value of 𝑝 is taken for both variables, i.e., 𝑝 = 𝑝𝐸𝑈 = 𝑝𝐺𝑜𝑙𝑑). 

The optimal levels are computed by the procedure described in Appendix 4. They are given on the last line of each panel. Eight parameters are estimated, as 

follows: the threshold u associated with the tail probability 𝑝, the dispersion parameter , the tail index 𝜉 for each series, the dependence parameter 𝛼 of the 

logistic function used to model the tail dependence and the correlation of return exceedances 𝜌 (derived from the dependence parameter 𝛼). Standard errors 

are given below in parentheses. The null hypothesis of normality 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟  is also tested by a Wald test. Two cases are considered, i.e., the asymptotic case 

and the finite-sample case. In the asymptotic case, the correlation of normal return exceedances over a threshold tending to infinity is theoretically equal to 0. 

In the finite-sample case, the correlation of return exceedances over a given finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), is computed by simulation, assuming that 

the returns follow a bivariate normal distribution with parameters equal to the empirically observed means and covariance matrix of returns. The issue of 

dependency is studied by considering two special cases, i.e., asymptotic independence 𝐻0: 𝜌 = 0 and total dependence 𝐻0: 𝜌 = 1. The p-values of the Wald 

tests are given below in brackets.  
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Table 3B. Estimation of the bivariate distribution of the return exceedances for the US equity market and gold 

Panel A: Negative return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝑈𝑆 𝜎𝑈𝑆 𝜉𝑈𝑆 𝑢𝐺𝑜𝑙𝑑 𝜎𝐺𝑜𝑙𝑑 𝜉𝐺𝑜𝑙𝑑 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

5% 0.031 0.026 -0.505 0.033 0.023 -0.260 0.966 0.089 9.888 2.842 101.222 

  (0.008) (0.278)  (0.007) (0.244) (0.037) (0.009) [0.000] [0.004] [0.000] 

10% 0.023 0.013 0.058 0.025 0.015 -0.017 0.901 0.193 193.000 16.696 806.998 

  (0.004) (0.249)  (0.004) (0.184) (0.035) (0.001) [0.000] [0.000] [0.000] 

20% 0.013 0.014 0.013 0.019 0.010 0.178 0.877 0.237 19.890 0.000 64.008 

  (0.002) (0.136)  (0.002) (0.150) (0.027) (0.012) [0.000] [1.000] [0.000] 

30% 0.007 0.015 -0.013 0.011 0.016 -0.058 0.779 0.415 22.105 2.085 31.210 

  (0.002) (0.100)  (0.002) (0.081) (0.024) (0.019) [0.000] [0.037] [0.000] 

40% 0.002 0.013 0.045 0.000 0.021 -0.162 0.708 0.515 19.214 0.214 18.119 

  (0.002) (0.087)  (0.002) (0.053) (0.019) (0.027) [0.000] [0.830] [0.000] 

50% 0.000 0.013 0.035 0.000 0.021 -0.152 0.671 0.558 19.045 0.803 15.056 

  (0.001) (0.079)  (0.002) (0.054) (0.018) (0.029) [0.000] [0.422] [0.000] 

6.06%

% 

0.028 0.024 -0.394 0.025 0.015 -0.017 0.934 0.189 188.750 16.401 810.912 

10.01%  (0.008) (0.261)  (0.004) (0.184) (0.035) (0.001) [0.000] [0.000] [0.000] 

 

Panel B: Positive return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝑈𝑆 𝜎𝑈𝑆 𝜉𝑈𝑆 𝑢𝐺𝑜𝑙𝑑 𝜎𝐺𝑜𝑙𝑑 𝜉𝐺𝑜𝑙𝑑 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

50% 0.000 0.014 -0.122 0.000 0.021 -0.285 0.631 0.614 20.258 2.070 32.393 

  (0.001) (0.056)  (0.001) (0.034) (0.018) (0.030) [0.000] [0.038] [0.000] 

40% 0.004 0.012 -0.055 0.006 0.016 -0.173 0.695 0.516 21.108 1.730 40.370 

  (0.001) (0.074)  (0.002) (0.062) (0.022) (0.024) [0.000] [0.084] [0.000] 

30% 0.008 0.011 -0.012 0.012 0.012 -0.055 0.745 0.453 24.473 3.195 53.530 

  (0.001) (0.094)  (0.002) (0.094) (0.025) (0.019) [0.000] [0.001] [0.000] 

20% 0.012 0.011 -0.008 0.016 0.014 -0.144 0.819 0.338 36.281 3.579 107.008 

  (0.002) (0.121)  (0.002) (0.099) (0.030) (0.009) [0.000] [0.000] [0.000] 

10% 0.019 0.012 -0.072 0.025 0.013 -0.118 0.856 0.274 42.145 8.827 153.822 

  (0.003) (0.165)  (0.003) (0.159) (0.041) (0.006) [0.000] [0.000] [0.000 

5% 0.027 0.012 -0.105 0.033 0.009 0.111 0.864 0.259 9.477 5.027 36.304 

  (0.004) (0.250)  (0.003) (0.344) (0.055) (0.027) [0.000] [0.000] [0.000] 

2.70% 0.027 0.012 -0.105 0.029 0.012 -0.083 0.855 0.269 0.286 0.030 12.789 

7.07%  (0.004) (0.250)  (0.003) (0.213) (0.052) (0.090) [0.022] [0.015] [0.000] 

Note: This table gives the asymptotic maximum likelihood estimates of the parameters of the bivariate distribution of return exceedances for the US equity 

markets represented by the S&P 500 index and gold. Panel A reports the estimates for the negative return exceedances. Panel B reports the estimates for the 

positive return exceedances. The return exceedances are defined with a threshold 𝑢. Both fixed and optimal threshold levels are used for 𝑢. The fixed levels 

correspond to tail probability 𝑝: 5%, 10%, 20%, 30%, 40% and 50% (the same value of 𝑝 is taken for both variables, i.e., 𝑝 = 𝑝𝑈𝑆 = 𝑝𝐺𝑜𝑙𝑑). The optimal 

levels are computed by the procedure described in Appendix 4. They are given on the last line of each panel. Eight parameters are estimated, as follows: the 

threshold u associated with the tail probability 𝑝, the dispersion parameter , the tail index 𝜉 for each series, the dependence parameter 𝛼 of the logistic function 

used to model the tail dependence and the correlation of return exceedances 𝜌 (derived from the dependence parameter 𝛼). Standard errors are given below in 

parentheses. The null hypothesis of normality 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟 is also tested by a Wald test. Two cases are considered, i.e., the asymptotic case and the finite-

sample case. In the asymptotic case, the correlation of normal return exceedances over a threshold tending to infinity is theoretically equal to 0. In the finite-

sample case, the correlation of return exceedances over a given finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), is computed by simulation, assuming that the returns 

follow a bivariate normal distribution with parameters equal to the empirically observed means and covariance matrix of returns. The issue of dependency is 

studied by considering two special cases, i.e., asymptotic independence 𝐻0: 𝜌 = 0 and total dependence 𝐻0: 𝜌 = 1. The p-values of the Wald tests are given 

below in brackets. 
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Table 4. Estimation of the bivariate distribution of return exceedances for bitcoin and gold 

Panel A: Negative return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐵𝑇𝐶 𝜎𝐵𝑇𝐶 𝜉𝐵𝑇𝐶 𝑢𝐺𝑜𝑙𝑑 𝜎𝐺𝑜𝑙𝑑 𝜉𝐺𝑜𝑙𝑑 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

5% 0.193 0.073 -0.182 0.032 0.024 -0.563 0.949 0.083 3.934 0.698 43.317 

  (0.045) (0.555)  (0.013) (0.561) (0.047) (0.021) [0.000] [0.485] [0.000] 

10% 0.149 0.077 -0.176 0.023 0.016 -0.155 0.973 0.049 5.061 2.663 99.065 

  (0.022) (0.219)  (0.005) (0.250) (0.026) (0.010) [0.000] [0.008] [0.000] 

20% 0.075 0.112 -0.288 0.017 0.011 0.076 0.860 0.254 82.112 0.492 241.551 

  (0.020) (0.124)  (0.002) (0.168) (0.034) (0.003) [0.000] [0.623] [0.000] 

30% 0.027 0.131 -0.312 0.010 0.015 -0.094 0.790 0.394 34.593 1.075 53.109 

  (0.018) (0.092)  (0.002) (0.105) (0.030) (0.011) [0.000] [0.282] [0.000] 

40% 0.011 0.104 -0.166 0.004 0.018 -0.170 0.740 0.462 25.310 0.372 29.532 

  (0.015) (0.100)  (0.002) (0.080) (0.026) (0.018) [0.000] [0.710] [0.000] 

50% 0.000 0.092 -0.086 0.000 0.020 -0.208 0.698 0.520 22.429 1.240 20.688 

  (0.013) (0.106)  (0.002) (0.069) (0.023) (0.023) [0.000] [0.215] [0.000] 

11.03% 0.137 0.087 -0.231 0.022 0.014 -0.065 0.952 0.054 22.662 2.962 399.423 

11.00%  (0.023) (0.195)  (0.004) (0.246) (0.031) (0.002) [0.000] [0.003] [0.000] 

 

Panel B: Positive return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐵𝑇𝐶 𝜎𝐵𝑇𝐶 𝜉𝐵𝑇𝐶 𝑢𝐺𝑜𝑙𝑑 𝜎𝐺𝑜𝑙𝑑 𝜉𝐺𝑜𝑙𝑑 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

50% 0.000 0.094 -0.042 0.000 0.018 -0.215 0.648 0.590 21.983 0.553 36.643 

  (0.012) (0.088)  (0.002) (0.051) (0.020) (0.027) [0.000] [0.580] [0.000 

40% 0.024 0.099 -0.078 0.006 0.016 -0.192 0.722 0.492 27.353 1.224 55.076 

  (0.013) (0.095)  (0.002) (0.062) (0.026) (0.018) [0.000] [0.221] [0.000] 

30% 0.050 0.099 -0.088 0.012 0.012 -0.104 0.781 0.385 35.816 0.792 92.725 

  (0.016) (0.111)  (0.002) (0.089) (0.031) (0.011) [0.000] [0.428] [0.000] 

20% 0.089 0.095 -0.084 0.016 0.011 -0.089 0.829 0.331 296.471 2.485 896.122 

  (0.019) (0.142)  (0.002) (0.112) (0.036) (0.001) [0.000] [0.013] [0.000] 

10% 0.155 0.075 0.051 0.024 0.009 0.030 0.919 0.164 15.118 0.393 91.890 

  (0.025) (0.274)  (0.002) (0.205) (0.041) (0.011) [0.000] [0.694] [0.000] 

5% 0.202 0.139 -0.470 0.032 0.006 0.249 0.948 0.106 4.740 1.167 44.464 

  (0.081) (0.530)  (0.002) (0.363) (0.048) (0.022) [0.000] [0.243] [0.000] 

10.34% 0.155 0.067 0.125 0.038 0.004 0.586 0.999 0.024 0.478 1.093 19.936 

2.29%  (0.023) (0.285)  (0.002) (0.649) (0.000) (0.050) [0.633] [0.274] [0.000] 

Note: This table gives the asymptotic maximum likelihood estimates of the parameters of the bivariate distribution of return exceedances for bitcoin and gold. 

Panel A reports the estimates for the negative return exceedances. Panel B reports the estimates for the positive return exceedances. The return exceedances 

are defined with a threshold 𝑢. Both fixed and optimal threshold levels are used for 𝑢. The fixed levels correspond to tail probability 𝑝: 5%, 10%, 20%, 30%, 

40% and 50% (the same value of 𝑝 is taken for both variables, i.e., 𝑝 = 𝑝𝐵𝑇𝐶 = 𝑝𝐺𝑜𝑙𝑑). The optimal levels are computed by the procedure described in 

Appendix 4. They are given on the last line of each panel. Eight parameters are estimated, as follows: the threshold u associated with the tail probability 𝑝, the 

dispersion parameter , the tail index 𝜉 for each series, the dependence parameter 𝛼 of the logistic function used to model the tail dependence and the correlation 

of return exceedances 𝜌 (derived from the dependence parameter 𝛼). Standard errors are given below in parentheses. The null hypothesis of normality 

𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟  is also tested by a Wald test. Two cases are considered, i.e., the asymptotic case and the finite-sample case. In the asymptotic case, the correlation 

of normal return exceedances over a threshold tending to infinity is theoretically equal to 0. In the finite-sample case, the correlation of return exceedances 

over a given finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), is computed by simulation, assuming that the returns follow a bivariate normal distribution with parameters 

equal to the empirically observed means and covariance matrix of returns. The issue of dependency is studied by considering two special cases, i.e., asymptotic 

independence 𝐻0: 𝜌 = 0 and total dependence 𝐻0: 𝜌 = 1. The p-values of the Wald tests are given below in brackets. 
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Table 5. Comparative results for equity markets, bitcoin and gold 

Panel A: Correlation among the return exceedances for the European equity market, bitcoin and gold 

Negative return exceedances Positive return exceedances 

Parameters Wald test Parameters Wald test 

𝑝 𝜌𝐸𝑈/𝐵𝑇𝐶  𝜌𝐸𝑈/𝐺𝑜𝑙𝑑  𝐻0: 𝜌𝐸𝑈/𝐵𝑇𝐶 = 𝜌𝐸𝑈/𝐺𝑜𝑙𝑑  𝑝 𝜌𝐸𝑈/𝐵𝑇𝐶  𝜌𝐸𝑈/𝐺𝑜𝑙𝑑  𝐻0: 𝜌𝐸𝑈/𝐵𝑇𝐶 = 𝜌𝐸𝑈/𝐺𝑜𝑙𝑑  

5% 0.019 0.060 0.804 5% 0.084 0.372 5.647 

 (0.050) (0.001) [0.421]  (0.021) (0.030) [0.000] 

10% 0.170 0.167 0.333 10% 0.209 0.366 7.476 

 (0.008) (0.001) [0.739]  (0.013) (0.008) [0.000] 

20% 0.234 0.201 1.434 20% 0.265 0.341 6.909 

 (0.010) (0.013) [0.1513]  (0.003) (0.008) [0.000] 

30% 0.364 0.353 0.379 30% 0.353 0.411 2.071 

 (0.011) (0.018) [0.704]  (0.011) (0.017) [0.038] 

40% 0.472 0.460 0.286 40% 0.456 0.473 0.415 

 (0.018) (0.024) [0.775]  (0.018) (0.023) [0.678] 

50% 0.477 0.522 0.900 50% 0.609 0.606 0.051 

 (0.022) (0.028) [0.368]  (0.028) (0.031) [0.959] 

Optimal 

thresholds 

0.164 0.123 0.482 Optimal 

thresholds 

0.175 0.270 0.785 

(0.008) (0.077) [0.630] (0.003) (0.118) [0.432] 

 

Panel B: Correlation among the return exceedances for the US equity market, bitcoin and gold 

Negative return exceedances Positive return exceedances 

Parameters Wald test Parameters Wald test 

𝑝 𝜌𝑈𝑆/𝐵𝑇𝐶  𝜌𝑈𝑆/𝐺𝑜𝑙𝑑  𝐻0: 𝜌𝑈𝑆/𝐵𝑇𝐶 = 𝜌𝑈𝑆/𝐺𝑜𝑙𝑑  𝑝 𝜌𝑈𝑆/𝐵𝑇𝐶  𝜌𝑈𝑆/𝐺𝑜𝑙𝑑  𝐻0: 𝜌𝑈𝑆/𝐵𝑇𝐶 = 𝜌𝑈𝑆/𝐺𝑜𝑙𝑑 

5% 0.123 0.089 1.619 5% 0.200 0.259 0.908 

 (0.012) (0.009) [0.105]  (0.038) (0.027) [0.364] 

10% 0.186 0.193 0.738 10% 0.260 0.274 0.609 

 (0.011) (0.001) [0.333]  (0.017) (0.006) [0.543] 

20% 0.333 0.237 7.385 20% 0.293 0.338 4.500 

 (0.001) (0.012) [0.000]  (0.001) (0.009) [0.000] 

30% 0.414 0.415 0.033 30% 0.312 0.453 4.862 

 (0.011) (0.019) [0.973]  (0.010) (0.019) [0.000] 

40% 0.499 0.469 0.714 40% 0.514 0.516 0.047 

 (0.018) (0.024) [0.475]  (0.019) (0.024) [0.963] 

50% 0.547 0.558 0.212 50% 0.599 0.614 0.268 

 (0.023) (0.029) [0.832]  (0.026) (0.030) [0.789] 

Optimal 

thresholds 

0.192 0.189 0.886 Optimal 

thresholds 

0.167 0.269 0.872 

(0.020) (0.001) [0.142] (0.027) (0.090) [0.383] 

Note: This table compares the results for equity markets, including bitcoin or gold. Panel A reports the correlation between return exceedances 

for the European equity market and bitcoin and the European equity market and gold. Panel B reports the correlation between the return 

exceedances for the US equity market and bitcoin and the US equity market and gold. For a given estimation, the same value of tail probability 

𝑝 is taken for the four variables, as follows: 𝑝 = 𝑝𝐸𝑈 = 𝑝𝑈𝑆 = 𝑝𝐵𝑇𝐶 = 𝑝𝐺𝑜𝑙𝑑. Standard errors are given below in parentheses. The null 

hypotheses of equal correlation of return exceedances 𝐻0: 𝜌𝐸𝑈/𝐵𝑇𝐶 = 𝜌𝐸𝑈/𝐺𝑜𝑙𝑑  and 𝐻0: 𝜌𝑈𝑆/𝐵𝑇𝐶 = 𝜌𝑈𝑆/𝐺𝑜𝑙𝑑are also tested by a Wald test. The 

p-values of the test are given below in brackets. 
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Table 6. Estimation of the bivariate distribution of return exceedances for the models of the logistic family 

Panel A: Negative return exceedances 

 Logistic  
Asymmetric 

logistic  
Negative logistic  

Asymmetric 

negative logistic  

 𝜒(𝑞) 𝐴𝐼𝐶 𝜒(𝑞) 𝐴𝐼𝐶 𝜒(𝑞) 𝐴𝐼𝐶 𝜒(𝑞) 𝐴𝐼𝐶 

Step 1: Equity markets EU/US 0.764 2.211 0.533 17.982 0.769 2.748 0.476 12.579 

Step 2: Equity markets and bitcoin 
EU/BTC 0.090 60.071 0.030 64.184 0.002 59.606 0.023 64.190 

US/BTC 0.113 90.476 0.047 94.304 0.043 90.335 0.035 93.215 

Step 3: Equity markets and gold 
EU/Gold 0.079 39.864 0.000 42.284 0.000 38.211 0.000 42.210 

US/Gold 0.075 34.961 0.000 38.929 0.012 34.842 0.012 38.842 

Step 4: Bitcoin and gold BTC/Gold 0.050 86.087 0.000 89.081 0.001 86.100 0.000 89.042 

 

Panel B: Positive return exceedances 

 Logistic  
Asymmetric 

logistic  
Negative logistic  

Asymmetric 

negative logistic  

 𝜒(𝑞) 𝐴𝐼𝐶 𝜒(𝑞) 𝐴𝐼𝐶 𝜒(𝑞) 𝐴𝐼𝐶 𝜒(𝑞) 𝐴𝐼𝐶 

Step 1: Equity markets EU/US 0.274 34.019 0.304 38.594 0.338 33.849 0.345 37.850 

Step 2: Equity markets and bitcoin 
EU/BTC 0.126 82.800 0.000 81.829 0.280 91.451 0.212 94.714 

US/BTC 0.109 66.039 0.132 75.525 0.111 75.620 0.021 69.839 

Step 3: Equity markets and gold 
EU/Gold 0.193 -1.973 0.221 3.170 0.287 -2.795 0.335 4.940 

US/Gold 0.194 26.776 0.149 30.848 0.146 26.025 0.167 30.168 

Step 4: Bitcoin and gold BTC/Gold 0.000 108.213 0.000 112.615 0.004 108.726 0.023 113.129 

Note: This table gives the asymptotic maximum likelihood estimate of the quantile dependence parameter of return exceedances 𝜒(𝑞) across 

the four extreme value models of the logistic family. These models are as follows: the logistic, the asymmetric logistic, the negative logistic 

and the asymmetric negative logistic models. Panel A reports the estimates for the negative return exceedances. Panel B reports the estimates 

for the positive return exceedances. The return exceedances are defined with optimal threshold levels computed by the procedure described in 

Appendix 4. The corresponding Akaike information criterion (𝐴𝐼𝐶) for each model is also computed. The parameter 𝜒(𝑞) measures the strength 

of quantile dependence across all the models of the logistic family. The special cases where 𝜒(𝑞) is equal to 1 and 𝜒(𝑞) is equal to 0 correspond 

to asymptotic independence and total dependence, respectively. The quantile 𝑞 at optimal thresholds is defined as the corresponding tail 

probability 𝑝 for negative return exceedances and (1 − 𝑝) for positive return exceedances. The minimum value of the 𝐴𝐼𝐶 across the four 

models is highlighted in bold. 

  



67 

Table 7. Optimal asset allocation based on tail risk measures (two-asset portfolios) 

Panel A: Tail risk defined by the Value at Risk (𝑽𝒂𝑹) 

 𝑝 = 95% 𝑝 = 99% 𝑝 = 99.9% 

 Weights 𝑉𝑎𝑅 𝐸(𝑟) 
𝑇𝑃  

ratio 

𝐷𝑃  

ratio 
Weights 𝑉𝑎𝑅 𝐸(𝑟) 

𝑇𝑃  

ratio 

𝐷𝑃  

ratio 
Weights 𝑉𝑎𝑅 𝐸(𝑟) 

𝑇𝑃  

ratio 

𝐷𝑃  

ratio 

Step 1 EU/US (30, 70) 3.25% 0.17% 0.012 0.031 (58, 42) 5.74% 0.14% 0.003 0.028 (28, 72) 9.20% 0.17% 0.051 0.053 

Step 2 

EU/BTC (92, 8) 3.52% 0.21% 0.117 0.389 (89, 11) 5.95% 0.26% 0.219 0.445 (85, 15) 8.80% 0.32% 0.420 0.541 

US/BTC (93, 7) 3.25% 0.30% 0.183 0.378 (88, 12) 5.75% 0.37% 0.637 0.510 (84, 16) 8.49% 0.42% 0.589 0.547 

Step 3 

EU/Gold (93, 7) 3.47% 0.10% 0.051 0.060 (97, 3) 5.81% 0.10% 0.012 0.036 (95, 5) 9.32% 0.09% 0.022 0.069 

US/Gold (91, 9) 3.27% 0.18% 0.074 0.081 (97, 3) 5.76% 0.19% 0.024 0.029 (98, 2) 8.95% 0.20% 0.015 0.009 

Step 4 BTC/Gold (4, 96) 3.20% 0.03% 0.203 0.219 (10, 90) 5.08% 0.13% 0.206 0.502 (16, 84) 7.80% 0.22% 0.211 0.619 

 

Panel B: Tail risk defined by the Expected Shortfall (𝑬𝑺) 

 𝑝 = 95% 𝑝 = 99% 𝑝 = 99.9% 

 Weights 𝐸𝑆 𝐸(𝑟) 
𝑇𝑃  

ratio 

𝐷𝑃  

ratio 
Weights 𝐸𝑆 𝐸(𝑟) 

𝑇𝑃  

ratio 

𝐷𝑃  

ratio 
Weights 𝐸𝑆 𝐸(𝑟) 

𝑇𝑃  

ratio 

𝐷𝑃  

ratio 

Step 1 EU/US (42, 58) 4.73% 0.16% 0.024 0.038 (48, 52) 7.13% 0.15% 0.034 0.056 (28, 72) 10.68% 0.17% 0.201 0.054 

Step 2 

EU/BTC (91, 9) 4.77% 0.23% 0.113 0.407 (87, 13) 7.27% 0.29% 0.169 0.480 (81, 19) 10.31% 0.38% 0.760 0.597 

US/BTC (92, 8) 4.52% 0.31% 0.260 0.246 (85, 15) 7.18% 0.41% 0.980 0.572 (81, 19) 9.84% 0.46% 0.606 0.572 

Step 3 

EU/Gold (95, 5) 4.96% 0.09% 0.005 0.056 (95, 5) 7.22% 0.10% 0.038 0.090 (94, 6) 10.70% 0.09% 0.020 0.131 

US/Gold (96, 4) 4.79% 0.19% 0.032 0.036 (96, 4) 7.08% 0.19% 0.031 0.038 (98, 2) 10.30% 0.20% 0.015 0.013 

Step 4 BTC/Gold (8, 92) 4.33% 0.09% 0.206 0.409 (13, 87) 6.23% 0.17% 0.187 0.584 (19, 81) 9.17% 0.27% 0.262 0.614 

Note: This table gives the optimal asset allocation for international equity markets, including either bitcoin or gold for Equal-𝑉𝑎𝑅 or Equal-𝐸𝑆 

portfolios. Step 1 refers to European and US equity markets. Step 2 refers to equity markets and bitcoin, i.e., the European equity market and 

bitcoin and the US equity market and bitcoin. Step 3 refers to equity markets and gold, i.e., the European equity market and gold and the US equity 

market and gold. Step 4 refers to bitcoin and gold. Panel A reports the optimal allocation, the Value at Risk (𝑉𝑎𝑅) as a tail risk measure and the 

portfolio performance measures. Panel B reports the optimal allocation, the Expected Shortfall (𝐸𝑆) as a tail risk measure and the performance 

measures. The 𝑉𝑎𝑅 and 𝐸𝑆 are estimated using the GPD, as defined in subsection 3.1 for different probability levels 𝑝: 95%, 99% and 99.9%. In 

addition to the expected return 𝐸(𝑟), we consider the tail performance (𝑇𝑃) and diversification performance (𝐷𝑃) ratios. For the same level of 

risk defined with either the 𝑉𝑎𝑅 or 𝐸𝑆 (reflecting negative return exceedances in the left tail), the 𝑇𝑃 ratio is computed by the ratio between the 

upside quantile of the distribution of the new position (reflecting positive return exceedances in the right tail) and the upside quantile of the initial 

position. For the same level of risk defined with either the 𝑉𝑎𝑅 or 𝐸𝑆 (reflecting negative return exceedances in the left tail), the 𝐷𝑃 ratio is 

computed by the ratio between the tail risk value (𝑉𝑎𝑅 or 𝐸𝑆) of the new position with the empirical extreme correlation and the theoretical tail 

risk value estimated by simulation from a bivariate logistic distribution with parameters equal to the estimated parameters of returns, assuming 

total dependence of the negative extremes. The procedure for the computation of the optimal weights is described in Appendix 5. 
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Table 8. Optimal asset allocation based on tail risk measures (three-asset portfolios) 

Panel A: Tail risk defined by the Value at Risk (𝑽𝒂𝑹) 

 𝑝 = 95% 𝑝 = 99% 𝑝 = 99.9% 

 Weights 𝑉𝑎𝑅 𝐸(𝑟) 
𝑇𝑃  

ratio 

𝐷𝑃  

ratio 
Weights 𝑉𝑎𝑅 𝐸(𝑟) 

𝑇𝑃  

ratio 

𝐷𝑃  

ratio 
Weights 𝑉𝑎𝑅 𝐸(𝑟) 

𝑇𝑃  

ratio 

𝐷𝑃  

ratio 

EU/BTC/Gold (64,15,21) 3.52% 0.29% 0.247 0.384 (55,17,28) 5.92% 0.31% 0.304 0.397 (59,19,22) 8.86% 0.35% 0.356 0.407 

US/BTC/Gold (75,11,14) 3.24% 0.32% 0.250 0.366 (62,16,22) 5.75% 0.37% 0.473 0.430 (53,19,28) 8.57% 0.44% 0.480 0.405 

 

Panel B: Tail risk defined by the Expected Shortfall (𝑬𝑺) 

 𝑝 = 95% 𝑝 = 99% 𝑝 = 99.9% 

 Weights 𝐸𝑆 𝐸(𝑟) 
𝑇𝑃  

ratio 

𝐷𝑃  

ratio 
Weights 𝐸𝑆 𝐸(𝑟) 

𝑇𝑃  

ratio 

𝐷𝑃  

ratio 
Weights 𝐸𝑆 𝐸(𝑟) 

𝑇𝑃  

ratio 

𝐷𝑃  

ratio 

EU/BTC/Gold (62,15,23) 4.77% 0.29% 0.253 0.395 (61,20,19) 7.22% 0.37% 0.318 0.410 (53,25,22) 10.20% 0.39% 0.340 0.422 

US/BTC/Gold (65,13,22) 4.52% 0.33% 0.384 0.387 (70,19,11) 7.17% 0.44% 0.519 0.410 (53,26,21) 9.85% 0.51% 0.582 0.445 

Note: This table gives the optimal asset allocation for international equity markets, including bitcoin and gold for Equal-𝑉𝑎𝑅 or Equal-𝐸𝑆 

portfolios, i.e., the European equity market, bitcoin and gold and the US equity market, bitcoin and gold. Panel A reports the optimal allocation, 

the Value at Risk (𝑉𝑎𝑅) as a tail risk measure and the portfolio performance measures. Panel B reports the optimal allocation, the Expected 

Shortfall (𝐸𝑆) as a tail risk measure and the performance measures. The 𝑉𝑎𝑅 and 𝐸𝑆 are estimated using the GPD, as defined in subsection 3.1 

for different probability levels 𝑝: 95%, 99% and 99.9%. In addition to the expected return 𝐸(𝑟), we consider the tail performance (𝑇𝑃) and 

diversification performance (𝐷𝑃) ratios. For the same level of risk defined with either the 𝑉𝑎𝑅 or 𝐸𝑆 (reflecting negative return exceedances in 

the left tail), the 𝑇𝑃 ratio is computed by the ratio between the upside quantile of the distribution of the new position (reflecting positive return 

exceedances in the right tail) and the upside quantile of the initial position. For the same level of risk defined with either the 𝑉𝑎𝑅 or 𝐸𝑆 (reflecting 

negative return exceedances in the left tail), the 𝐷𝑃 ratio is computed by the ratio between the tail risk value (𝑉𝑎𝑅 or 𝐸𝑆) of the new position with 

the empirical extreme correlation and the theoretical tail risk value estimated by simulation from a trivariate logistic distribution with parameters 

equal to the estimated parameters of returns, assuming total dependence of the negative extremes. The procedure for the computation of the optimal 

weights is described in Appendix 5. 
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Figure 1. Correlation between the return exceedances for the European and US equity markets 

 

Note: This figure represents the correlation of return exceedances between the European and US equity markets 

represented by the STOXX Europe 600 index and the S&P 500 index. The solid line represents the correlation between 

the actual return exceedances obtained from the estimation of the bivariate distribution modeled with the logistic function 

(see the estimation results in Table 1). The dotted line represents the theoretical correlation between the simulated normal 

return exceedances assuming a bivariate normal distribution with the parameters equal to the empirically observed means 

and the covariance matrix of returns. The value of the tail probability 𝑝 used to define the threshold for the return 

exceedance ranges from 5% to 50% for both the negative return exceedances (left tail) and positive return exceedances 

(right tail). For a given estimation, the same value of 𝑝 is taken for both variables, i.e., 𝑝 = 𝑝𝐸𝑈 = 𝑝𝑈𝑆.  
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Figure 2A. Correlation between the return exceedances for the European equity market and 

bitcoin 

 

Note: This figure represents the correlation of the return exceedances between the European equity markets represented 

by the STOXX Europe 600 index and bitcoin. The solid line represents the correlation between the actual return 

exceedances obtained from the estimation of the bivariate distribution modeled with the logistic function (see the 

estimation results in Table 2A). The dotted line represents the theoretical correlation between the simulated normal return 

exceedances, assuming a bivariate normal distribution with parameters equal to the empirically observed means and 

covariance matrix of returns. The value of the tail probability 𝑝 used to define the threshold for the return exceedances 

ranges from 5% to 50% for both the negative return exceedances (left tail) and positive return exceedances (right tail). 

For a given estimation, the same value of 𝑝 is taken for both variables, i.e., 𝑝 = 𝑝𝐸𝑈 = 𝑝𝐵𝑇𝐶.  
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Figure 2B. Correlation between the return exceedances for the US equity market and bitcoin 

 

Note: This figure represents the correlation of the return exceedances between the US equity markets represented by the 

S&P 500 index and bitcoin. The solid line represents the correlation between the actual return exceedances obtained from 

the estimation of the bivariate distribution modeled with the logistic function (see the estimation results in Table 2B). The 

dotted line represents the theoretical correlation between the simulated normal return exceedances, assuming a bivariate 

normal distribution with parameters equal to the empirically observed means and covariance matrix of returns. The value 

of the tail probability 𝑝 used to define the threshold for the return exceedances ranges from 5% to 50% for both the 

negative return exceedances (left tail) and positive return exceedances (right tail). For a given estimation, the same value 

of 𝑝 is taken for both variables, i.e., 𝑝 = 𝑝𝑈𝑆 = 𝑝𝐵𝑇𝐶 .  
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Figure 3A. Correlation between the return exceedances for the European equity market and 

gold 

 

Note: This figure represents the correlation of return exceedances between the European equity markets represented by 

the STOXX Europe 600 index and gold. The solid line represents the correlation between the actual return exceedances 

obtained from the estimation of the bivariate distribution modeled with the logistic function (see the estimation results in 

Table 3A). The dotted line represents the theoretical correlation between the simulated normal return exceedances, 

assuming a bivariate normal distribution with parameters equal to the empirically observed means and covariance matrix 

of returns. The value of the tail probability 𝑝 used to define the threshold for the return exceedances ranges from 5% to 

50% for both the negative return exceedances (left tail) and positive return exceedances (right tail). For a given estimation, 

the same value of 𝑝 is taken for both variables, i.e., 𝑝 = 𝑝𝐸𝑈 = 𝑝𝐺𝑜𝑙𝑑.  
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Figure 3B. Correlation between the return exceedances for the US equity market and gold 

 

Note: This figure represents the correlation of the return exceedances between the US equity markets represented by the 

S&P 500 index and gold. The solid line represents the correlation between the actual return exceedances obtained from 

the estimation of the bivariate distribution modeled with the logistic function (see the estimation results in Table 3B). The 

dotted line represents the theoretical correlation between the simulated normal return exceedances, assuming a bivariate 

normal distribution with parameters equal to the empirically observed means and covariance matrix of returns. The value 

of the tail probability 𝑝 used to define the threshold for the return exceedances ranges from 5% to 50% for both the 

negative return exceedances (left tail) and positive return exceedances (right tail). For a given estimation, the same value 

of 𝑝 is taken for both variables, i.e., 𝑝 = 𝑝𝑈𝑆 = 𝑝𝐺𝑜𝑙𝑑 .  
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Figure 4. Correlation between the return exceedances for bitcoin and gold 

 

Note: This figure represents the correlation of the return exceedances between bitcoin and gold. The solid line represents 

the correlation between the actual return exceedances obtained from the estimation of the bivariate distribution modeled 

with the logistic function (see the estimation results in Table 4). The dotted line represents the theoretical correlation 

between the simulated normal return exceedances, assuming a bivariate normal distribution with parameters equal to the 

empirically observed means and covariance matrix of returns. The value of the tail probability 𝑝 used to define the 

threshold for the return exceedances ranges from 5% to 50% for both the negative return exceedances (left tail) and 

positive return exceedances (right tail). For a given estimation, the same value of 𝑝 is taken for both variables, i.e., 𝑝 =
𝑝𝐵𝑇𝐶 = 𝑝𝐺𝑜𝑙𝑑 . 
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Figure 5A. Correlation between the return exceedances for the European equity market, bitcoin 

or gold 

 

Note: This figure represents the correlation of the return exceedances for the European equity market, with either bitcoin 

or gold (see the estimation results in Table 5 - Panel A). The squared points line represents the correlation between the 

return exceedances for the European equity market and bitcoin. The circle points line represents the correlation between 

the return exceedances for the European equity market and gold. The value of the tail probability 𝑝 used to define the 

return exceedances ranges from 5% to 50% for both the negative return exceedances (left tail) and positive return 

exceedances (right tail). For a given estimation, the same value of 𝑝 is taken for three variables, i.e., 𝑝 = 𝑝𝐸𝑈 = 𝑝𝐵𝑇𝐶 =
𝑝𝐺𝑜𝑙𝑑 . 
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Figure 5B. Correlation between the return exceedances for the US equity market, bitcoin or 

gold 

 

Note: This figure represents the correlation of the return exceedances for the US equity market, with either bitcoin or gold 

(see the estimation results in Table 5 - Panel B). The squared points line represents the correlation between the return 

exceedances for the US equity market and bitcoin. The circle points line represents the correlation between the return 

exceedances for the US equity market and gold. The value of the tail probability 𝑝 used to define the return exceedances 

ranges from 5% to 50% for both the negative return exceedances (left tail) and positive return exceedances (right tail). 

For a given estimation, the same value of 𝑝 is taken for three variables, i.e., 𝑝 = 𝑝𝑈𝑆 = 𝑝𝐵𝑇𝐶 = 𝑝𝐺𝑜𝑙𝑑 . 
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Figure 6. Correlation between the return exceedances for other international equity markets, bitcoin or gold 

Figure 6A. Chinese equity market, bitcoin or gold Figure 6B. Japanese equity market, bitcoin or gold  

  

Figure 6C. French equity market, bitcoin or gold Figure 6D. German equity market, bitcoin or gold 

  

Figure 6E. UK equity market, bitcoin or gold 

 

Note: This figure represents the correlation of the return exceedances for other international equity markets, with either bitcoin or gold. Figure 

6A refers to the Chinese equity market, Figure 6B to the Japanese equity market, Figure 6C to the French equity market, Figure 6D to the 

German equity market and Figure 6E to the UK equity market, which are represented by the SSE 180, Nikkei 225, CAC 40, DAX 30 and FTSE 

100 equity indices, respectively. The squared points line represents the correlation between the return exceedances for each equity market and 

bitcoin. The circle points line represents the correlation between the return exceedances for each equity market and gold. The value of the tail 
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probability 𝑝 used to define the return exceedances ranges from 5% to 50% for both the negative return exceedances (left tail) and positive 

return exceedances (right tail). For a given estimation, the same value of 𝑝 is taken for three variables, i.e., 𝑝 = 𝑝𝐸𝑀 = 𝑝𝐵𝑇𝐶 = 𝑝𝐺𝑜𝑙𝑑 , where 

𝐸𝑀 stands for the equity markets. 
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Figure 7. Correlation between the return exceedances for the European and US equity markets, bitcoin, m-

CRIX or gold 

Figure 7A. Bitcoin and m-CRIX Figure 7B. European equity market and m-CRIX 

  

Figure 7C. US equity market and m-CRIX Figure 7D. m-CRIX and gold 

  

Note: This figure represents the correlation of the return exceedances among the European and US equity markets (represented by the STOXX 

Europe 600 index and the S&P 500 index), with bitcoin, modified CRIX (m-CRIX) or gold. Figure 7A refers to the extreme correlation between 

bitcoin and the m-CRIX index; Figure 7B refers to the European equity market and m-CRIX index; Figure 7C refers to the US equity market 

and m-CRIX and Figure 7D refers to m-CRIX and gold. The solid line represents the correlation between the actual return exceedances obtained 

from the estimation of the bivariate distribution modeled with the logistic function. The dotted line represents the theoretical correlation 

between the simulated normal return exceedances, assuming a bivariate normal distribution, with parameters equal to the empirically observed 

means and covariance matrix of returns. The value of the tail probability 𝑝 used to define the return exceedances ranges from 5% to 50% for 

both negative return exceedances (left tail) and positive return exceedances (right tail). For a given estimation, the same value of 𝑝 is taken for 

all variables, i.e., 𝑝 = 𝑝𝐸𝑈 = 𝑝𝑈𝑆 = 𝑝𝐵𝑇𝐶 = 𝑝𝑚−𝐶𝑅𝐼𝑋 = 𝑝𝐺𝑜𝑙𝑑. 
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Figure 8. Behavior over time for the negative return exceedances 

Figure 8A. Behavior over time for the European and US equity markets 

 

Figure 8B. Behavior over time for the European equity market 

and bitcoin Figure 8C. Behavior over time for the US equity market and bitcoin 

  
Figure 8D. Behavior over time for the European equity market 

and gold Figure 8E. Behavior over time for the US equity market and gold 
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Figure 8F. Behavior over time for bitcoin and gold 

 

Note: This figure represents the behavior over time of the extreme correlation for the negative return exceedances via a rolling estimation 

window for the European and US equity markets (represented by the STOXX Europe 600 index and the S&P 500 index) with either bitcoin or 

gold. Figure 8A refers to equity markets, i.e., European and US equity markets (Step 1). Figures 8B and 8C refer to equity markets and bitcoin 

(Step 2), i.e., the European equity market and bitcoin and the US equity market and bitcoin, respectively. Figures 8D and 8E refer to equity 

markets and gold (Step 3), i.e., the European equity market and gold and the US equity market and gold, respectively. Figure 8F refers to 

bitcoin and gold (Step 4). 
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Figure 9. Behavior over time for the positive return exceedances 

Figure 9A. Behavior over time for the European and US equity markets 

 
Figure 9B. Behavior over time for the European equity market 

and bitcoin Figure 9C. Behavior over time for the US equity market and bitcoin 

  
Figure 9D. Behavior over time for the European equity market 

and gold Figure 9E. Behavior over time for the US equity market and gold 

  

Figure 9F. Behavior over time for bitcoin and gold 
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Note: This figure represents the behavior over time of the extreme correlation for the positive return exceedances via a rolling estimation 

window for the European and US equity markets (represented by the STOXX Europe 600 index and the S&P 500 index) with either bitcoin or 

gold. Figure 9A refers to equity markets, i.e., European and US equity markets (Step 1). Figures 9B and 9C refer to equity markets and bitcoin 

(Step 2), i.e., the European equity market and bitcoin and the US equity market and bitcoin, respectively. Figures 9D and 9E refer to equity 

markets and gold (Step 3), i.e., the European equity market and gold and the US equity market and gold, respectively. Figure 9F refers to 

bitcoin and gold (Step 4). 
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Figure 10. Nonparametric copulas for the European and US equity markets with either bitcoin or gold 

Figure 10A. Nonparametric copula for the European and US equity markets 

 

Figure 10B. Nonparametric copula for the European equity 

market and bitcoin 

Figure 10C. Nonparametric copula for the US equity market and 

bitcoin 

  

Figure 10D. Nonparametric copula for the European equity 

market and gold 

Figure 10E. Nonparametric copula for the US equity market and 

gold 

  

Figure 10F. Nonparametric copula for bitcoin and gold 
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Note: This figure represents the surface plots for the nonparametric kernel-type copula density estimator for the European and US equity 

markets, represented by the STOXX Europe 600 index and the S&P 500 index, with either bitcoin or gold. Figure 10A refers to equity markets, 

i.e., the European and US equity markets (Step 1). Figures 10B and 10C refer to equity markets and the bitcoin (Step 2), i.e., the European 

equity market and bitcoin and the US equity market and bitcoin, respectively. Figures 10D and 10E refer to equity markets and gold (Step 3), 

i.e., the European equity market and gold and the US equity market and gold, respectively. Figure 10F refers to bitcoin and gold (Step 4). 


